
gamedesigninitiative
at cornell university

the

Memory in C++

Lecture 13

gamedesigninitiative
at cornell university

the

Primitive Data Types

� byte: basic value (8 bits)

� char: 1 byte

� short: 2 bytes

� int: 4 bytes

� long: 8 bytes

� float: 4 bytes

� double: 8 bytes

Memory in C++

Sizing Up Memory

Complex Data Types

� Pointer: platform dependent

� 4 bytes on 32 bit machine

� 8 bytes on 64 bit machine

� Java reference is a pointer

� Array: data size * length

� Strings same (w/ trailing null)

� Struct: sum of fields

� Same rule for classes

� Structs = classes w/o methods

Not standard
May change

IEEE standard
Won’t change

2

gamedesigninitiative
at cornell university

the

class Date {

short year;

byte day;

byte month;

}

class Student {

int id;

Date birthdate;

Student* roommate;

}

2 byte

1 byte

1 bytes

4 bytes

4 bytes

4 bytes

4 or 8 bytes (32 or 64 bit)

12 or 16 bytes
Memory in C++

Memory Example

3

gamedesigninitiative
at cornell university

the

� C++ allows ANY cast
� Is not “strongly typed”
� Assumes you know best
� But must be explicit cast

� Safe = aligns properly
� Type should be same size
� Or if array, multiple of size

� Unsafe = data corruption
� It is all your fault
� Large cause of seg faults

// Floats for OpenGL
float[] lineseg = {0.0f, 0.0f,

2.0f, 1.0f};

// Points for calculation
Vec2* points

// Convert to the other type
points = (Vec2*)lineseg;

for(int ii = 0; ii < 2; ii++) {
CULog("Point %4.2, %4.2",

points[ii].x, points[ii].y);
}

Memory in C++4

Memory and Pointer Casting

gamedesigninitiative
at cornell university

the

Two Main Concerns with Memory

�Allocating Memory
� With OS support: standard allocation

�Reserved memory: memory pools

�Getting rid of memory you no longer want
� Doing it yourself: deallocation

� Runtime support: garbage collection

Memory in C++5

gamedesigninitiative
at cornell university

the

malloc

� Based on memory size
� Give it number of bytes
� Typecast result to assign it
� No initialization at all

� Example:
char* p = (char*)malloc(4)

Memory in C++6

C/C++: Allocation Process

new

� Based on data type
� Give it a data type
� If a class, calls constructor
� Else no default initialization

� Example:
Point* p = new Point();

Stack

?
?

…
?

Heap

n bytes

sizeof(Class)

Stack

1
0

…
1

Heap

gamedesigninitiative
at cornell university

the

malloc

� Based on memory size
� Give it number of bytes
� Typecast result to assign it
� No initialization at all

� Example:
char* p = (char*)malloc(4)

Memory in C++7

C/C++: Allocation Process

new

� Based on data type
� Give it a data type
� If a class, calls constructor
� Else no default initialization

� Example:
Point* p = new Point();

Stack

?
?

…
?

Heap

n bytes

sizeof(Class)

Stack

1
0

…
1

Heap

Preferred in C
Preferred in C++

gamedesigninitiative
at cornell university

the

Custom Allocators

� Idea: Instead of new, get object from array
� Just reassign all of the fields
� Use Factory pattern for constructor
� See alloc() method in CUGL objects

� Problem: Running out of objects
� We want to reuse the older objects
� Easy if deletion is FIFO, but often isn’t

Memory in C++8

Pre-allocated Array

Start Free End

(called Object Pool)

Easy if only
one object

type to
allocate

gamedesigninitiative
at cornell university

the

Custom Allocators in CUGL
class Texture : : public enable_shared_from_this<Texture> {
public:

/** Creates a sprite with an image filename. */
static shared_ptr<Texture> allocWithFile(const string& file);

/** Creates a sprite with a Texture2D object. */
static shared_ptr< Texture> allocWithData(const void *data, int w, int h);

private:
/** Creates, but does not initialize sprite */
Texture();

/** Initializes a sprite with an image filename. */
virtual bool initWithFile(const string& file);

/** Initializes a sprite with a texture. */
virtual bool initWithData(const void *data, int w, int h);

};

Memory in C++9

Allocation &
initialization

Allocation
only

Initialization
only

gamedesigninitiative
at cornell university

the

Custom Allocators in CUGL
class Texture : : public enable_shared_from_this<Texture> {
public:

/** Creates a sprite with an image filename. */
static shared_ptr<Texture> allocWithFile(const string& file);

/** Creates a sprite with a Texture2D object. */
static shared_ptr< Texture> allocWithData(const void *data, int w, int h);

private:
/** Creates, but does not initialize sprite */
Sprite();

/** Initializes a sprite with an image filename. */
virtual bool initWithFile(const string& file);

/** Initializes a sprite with a texture. */
virtual bool initWithData(const void *data, int w, int h);

};

Memory in C++10

Allocation &
initialization

Allocation
only

Initialization
only

Standard allocation

Customizable allocation

gamedesigninitiative
at cornell university

the

� Create an object queue
� Separate from preallocation
� Stores objects when “freed”

� To allocate an object…
� Look at front of free list
� If object there take it
� Otherwise make new object

� Preallocation unnecessary
� Queue wins in long term
� Main performance hit is

deletion/fragmentation

// Free the new particle
freelist.push_back(p);

…

// Allocate a new particle
Particle* q;

if (!freelist.isEmpty()) {
q = freelist.pop();

} else {
q = new Particle();

}

q.set(…)
Memory in C++11

Free Lists

gamedesigninitiative
at cornell university

the

Particle Pool Example

Memory in C++12

gamedesigninitiative
at cornell university

the

Particle Pool Example

Memory in C++13

See FreeList and
GreedyFreeList

gamedesigninitiative
at cornell university

the

Two Main Concerns with Memory

�Allocating Memory
� With OS support: standard allocation

�Reserved memory: memory pools

�Getting rid of memory you no longer want
� Doing it yourself: deallocation

� Runtime support: garbage collection

Memory in C++14

gamedesigninitiative
at cornell university

the

� Depends on allocation
� malloc: free
� new: delete

� What does deletion do?
� Marks memory as available
� Does not erase contents
� Does not reset pointer

� Only crashes if pointer bad
� Pointer is currently NULL
� Pointer is illegal address

int main() {

cout << "Program started" << endl;
int* a = new int[LENGTH];

delete a;

for(int ii = 0; ii < LENGTH; ii++) {
cout << "a[" << ii << "]="

<< a[ii] << endl;

}
cout << "Program done" << endl;

}

Memory in C++

Manual Deletion in C/C++

15

gamedesigninitiative
at cornell university

the

Not An Array

� Basic format:
type* var = new type(params);
…
delete var;

� Example:
� int* x = new int(4);
� Point* p = new Point(1,2,3);

� One you use the most

C++ Overview16

Recall: Allocation and Deallocation

Arrays

� Basic format:
type* var = new type[size];
…
delete[] var; // Different

� Example:
� int* array = new int[5];
� Point* p = new Point[7];

� Forget [] == memory leak

gamedesigninitiative
at cornell university

the

� Leak: Cannot release memory
� Object allocated on heap
� Only reference is moved

� Consumes memory fast!

� Can even happen in Java
� JNI supports native libraries
� Method may allocate memory
� Need another method to free
� Example: dispose() in JOGL

Memory in C++

Memory Leaks

memoryArea = newArea;

17

gamedesigninitiative
at cornell university

the

void foo() {
MyObject* o =

new MyObject();
o.doSomething();
o = null;
return;

}

void foo(int key) {
MyObject* o =

table.get(key);
o.doSomething();
o = null;
return;

}

Memory in C++

A Question of Ownership

Memory
Leak

Not a
Leak

18

gamedesigninitiative
at cornell university

the

void foo() {
MyObject* o =

table.get(key);
table.remove(key);
o = null;
return;

}

void foo(int key) {
MyObject* o =

table.get(key);
table.remove(key);
ntable.put(key,o);
o = null;
return;

}

Memory in C++

A Question of Ownership

Memory
Leak? Not a

Leak

19

gamedesigninitiative
at cornell university

the

Thread 1

void run() {

o.doSomething1();

}

Memory in C++

A Question of Ownership

Thread 2

void run() {

o.doSomething2();

}

“Owners” of obj

Who deletes obj?

20

gamedesigninitiative
at cornell university

the

Function-Based

� Object owned by a function
� Function allocated object
� Can delete when function done

� Ownership never transferred
� May pass to other functions
� But always returns to owner

� Really a stack-based object
� Active as long as allocator is
� But allocated on heap (why?)

Memory in C++

Understanding Ownership

Object-Based

� Owned by another object
� Referenced by a field
� Stored in a data structure

� Allows multiple ownership
� No guaranteed relationship

between owning objects
� Call each owner a reference

� When can we deallocate?
� No more references
� References “unimportant”

21

gamedesigninitiative
at cornell university

the

Function-Based

� Object owned by a function
� Function allocated object

� Can delete when function done

� Ownership never transferred
� May pass to other functions

� But always returns to owner

� Really a stack-based object
� Active as long as allocator is

� But allocated on heap (why?)

Memory in C++

Understanding Ownership

Object-Based

� Owned by another object
� Referenced by a field
� Stored in a data structure

� Allows multiple ownership
� No guaranteed relationship

between owning objects
� Call each owner a reference

� When can we deallocate?
� No more references
� References “unimportant”

Easy: Will ignore

22

gamedesigninitiative
at cornell university

the

Strong Reference

� Reference asserts ownership
� Cannot delete referred object

� Assign to NULL to release
� Else assign to another object

� Can use reference directly
� No need to copy reference

� Treat like a normal object

� Standard type of reference

Memory in C++

Reference Strength

Weak Reference

� Reference != ownership
� Object can be deleted anytime
� Often for performance caching

� Only use indirect references
� Copy to local variable first
� Compute on local variable

� Be prepared for NULL
� Reconstruct the object?
� Abort the computation?

23

gamedesigninitiative
at cornell university

the

� C++ can override anything
� Assignment operator =
� Dereference operator ->

� Use special object as pointer
� Has field to reference object
� Tracks ownership of object
� Uses reference counting

� What about deletion?
� Smart pointer is on stack
� Stack releases ownership

Memory in C++

C++11 Support: Shared Pointers

24

object

handle

Foo* object = new Foo();
shared_ptr<Foo> handle(object);
…
handle->foo(); //object->foo()

gamedesigninitiative
at cornell university

the

C++11 Support: Shared Pointers
void foo() {

shared_ptr<Thing> p1(new Thing); // Allocate new object
shared_ptr<Thing> p2=p1; // p1 and p2 share ownership
shared_ptr<Thing> p3(new Thing); // Allocate another Thing
…
p1 = find_some_thing(); // p1 might be new thing
p3->defrangulate(); // call a member function
cout <<*p2 << endl; // dereference pointer
…
// "Free" the memory for pointer
p1.reset(); // decrement reference, delete if last
p2 = nullptr; // empty pointer and decrement

}

Memory in C++25

gamedesigninitiative
at cornell university

the

C++11 Support: Weak Pointers
void foo() {

shared_ptr<Thing> p1(new Thing); // Allocate new object
weak_ptr<Thing> p2=p1; // p2 is a weak reference
…
p1 = find_some_thing(); // p1 might be new thing
auto p3 = p2.lock(); // Must lock p2 to dereference
cout <<*p3 << endl; // dereference pointer
…
// "Free" the memory for pointer
p1.reset(); // decrement reference, delete if last
p2 = nullptr; // empty pointer (but does not decrement)

}

Memory in C++26

gamedesigninitiative
at cornell university

the

� Shared pointers are objs
� They are not the pointer
� They contain the pointer

� Copy increases reference
� What to avoid if possible
� So reference smart pointer

� But make reference const
� Keep from modifying ptr
� Can still modify object

void foo(shared_ptr<A> a) {
// Creates new reference to a

}

void foo(shared_ptr<A>& a) {
// No new reference to a
// But can modify pointer

}

void foo(const shared_ptr<A>& a){
// The preferred solution

}

Memory in C++27

Passing Smart Pointers

gamedesigninitiative
at cornell university

the

Summary

� Memory usage is always an issue in games
� Uncompressed images are quite large
� Particularly a problem on mobile devices

� Limit allocations in your animation frames
� Intra-frame objects: cached objects
� Inter-frame objects: free lists

� Must track ownership of allocated objects
� The owner is responsible for deletion
� C++11 smart pointers can manage this for us

Memory in C++28

