
gamedesigninitiative
at cornell university

the

C++: Classes

Lecture 10



gamedesigninitiative
at cornell university

the

Declaration

� Like a Java interface
� Fields, method prototypes
� Put in the header file

class AClass {
private:  // All privates in group

int field;
void helper(); 

public:  // All publics in group
AClass(int field);  // constructor
~AClass();           // destructor

}; // SEMICOLON!

C++ Overview2

Classes in C++

Implementation

� Body of all of the methods
� Preface method w/ class
� Put in the cpp file

void AClass::helper() {
field = field+1;

}
AClass::AClass(int field) {

this->field = field;
}
AClass::~AClass() {

// Topic of later lecture    
}



gamedesigninitiative
at cornell university

the

Declaration

� Like a Java interface
� Fields, method prototypes
� Put in the header file

class AClass {
private:  // All privates in group

int field;
void helper(); 

public:  // All publics in group
AClass(int field);  // constructor
~AClass();           // destructor

}; // SEMICOLON!

C++ Overview3

Classes in C++

Implementation

� Body of all of the methods
� Preface method w/ class
� Put in the cpp file

void AClass::helper() {
field = field+1;

}
AClass::AClass(int field) {

this->field = field;
}
AClass::~AClass() {

// Topic of later lecture    
}

Class name
acts like a
namespace



gamedesigninitiative
at cornell university

the

Stack-Based

� Object assigned to local var

� Variable is NOT a pointer

� Deleted when variable deleted

� Methods/fields with period (.)

� Example:

void foo() {
Point p(1,2,3); // constructor
…
// Deleted automatically

}

C++ Overview4

Stack-Based vs. Heap Based

Heap-Based

� Object assigned to pointer

� Object variable is a pointer

� Must be manually deleted

� Methods/fields with arrow (->)

� Example:

void foo() {
Point* p = new Point(1,2,3); 
…
delete p;

}



gamedesigninitiative
at cornell university

the

Stack-Based

� Object assigned to local var

� Variable is NOT a pointer

� Deleted when variable deleted

� Methods/fields with period (.)

� Example:

void foo() {
Point p(1,2,3); // constructor
…
// Deleted automatically

}

C++ Overview5

Stack-Based vs. Heap Based

Heap-Based

� Object assigned to pointer

� Object variable is a pointer

� Must be manually deleted

� Methods/fields with arrow (->)

� Example:

void foo() {
Point* p = new Point(1,2,3); 
…
delete p;

}

Also if

pointer to

stack-based



gamedesigninitiative
at cornell university

the

� Do not need heap to return
� Can move to calling stack
� But this must copy object

� Need a special constructor
� Called copy constructor
� Takes reference to object
� C++ calls automatically

� Is this a good thing?
� Performance cost to copy
� Cheaper than heap if small

Point foo_point(float x) {
Point p(x, x);
return p; // Not an error

}

Point::Point(const Point& p) {
x = p.x; 
y = p.y; 
z = p.z;

}

C++ Overview6

Returning a Stack-Based Object

Calls



gamedesigninitiative
at cornell university

the

� Do not need heap to return
� Can move to calling stack
� But this must copy object

� Need a special constructor
� Called copy constructor
� Takes reference to object
� C++ calls automatically

� Is this a good thing?
� Performance cost to copy
� Cheaper than heap if small

Point foo_point(float x) {
Point p(x, x);
return p; // Not an error

}

Point::Point(const Point& p) {
x = p.x; 
y = p.y; 
z = p.z;

}

C++ Overview7

Returning a Stack-Based Object

Calls

What happens when you return a string



gamedesigninitiative
at cornell university

the

Copy Constructor

� Point(const Point& p)
� Copies the object p
� Object p can still be used

� Does not require C++11

� Same as move if
� Only has primitive fields
� Has no allocated resources

� Example: cugl::Vec2

C++ Overview8

Copy vs Move Constructor

Move Constructor

� Point(Point&& p)
� Takes resources from p
� Object p not safe to use

� Requires C++11

� Better than copy if
� Object is a return value
� Object has fields in heap

� Example: cugl::Poly2



gamedesigninitiative
at cornell university

the

The Many Meanings of const

� In C++, it is common to see something like:

const Point& foo(const Point& p) const;

Believe it or not, these are not the only consts!
But these are generally the only ones to use
See online tutorials for more

C++ Overview9



gamedesigninitiative
at cornell university

the

The Many Meanings of const

� In C++, it is common to see something like:

const Point& foo(const Point& p) const;

Believe it or not, these are not the only consts!
But these are generally the only ones to use
See online tutorials for more

C++ Overview10

Caller cannot 
modify the

object returned



gamedesigninitiative
at cornell university

the

The Many Meanings of const

� In C++, it is common to see something like:

const Point& foo(const Point& p) const;

Believe it or not, these are not the only consts!
But these are generally the only ones to use
See online tutorials for more

C++ Overview11

Caller cannot 
modify the

object returned

Method cannot 
modify the

object passed



gamedesigninitiative
at cornell university

the

The Many Meanings of const

� In C++, it is common to see something like:

const Point& foo(const Point& p) const;

Believe it or not, these are not the only consts!
But these are generally the only ones to use
See online tutorials for more

C++ Overview12

Caller cannot 
modify the

object returned

Method cannot 
modify the

object passed

Method cannot 
modify any
object fields



gamedesigninitiative
at cornell university

the

The Many Meanings of const

� In C++, it is common to see something like:

const Point& foo(const Point& p) const;

� Believe it or not, these are not the only consts!
� But these are generally the only ones to use
� See online tutorials for more

C++ Overview13

Caller cannot 
modify the

object returned

Method cannot 
modify the

object passed

Method cannot 
modify any
object fields



gamedesigninitiative
at cornell university

the

� Can implement in .h file
� Define methods Java-style
� Will inline the methods

� Less important these days
� Good compilers inline
� Function overhead is low

� Only two good applications
� Getters and setters
� Overloaded operators
� Use this sparingly

class Point {
private:

float x;
float y;

public:

Point(float x, float y, float z);

float getX() const { return x; }

void setX(float x) {
this->x = x;

}

…
};

C++ Overview14

Inlining Method Definitions



gamedesigninitiative
at cornell university

the

� Change operator meaning
� Great for math objects: +, *
� But can do any symbol: ->

� Method w/ “operator” prefix
� Object is always on the left

� Other primitive or const &

� Right op w/ friend function
� Function, not a method

� Object explicit 2nd argument

� Has full access to privates 

Point& operator*=(float rhs) {
x *= rhs; y *= rhs; z *= rhs;
return *this;

}

Point operator*(const float &rhs) const {
return (Point(*this)*=rhs);

}

friend Point operator* (float lhs, 
const Point& p) {

return p*lhs;
}

C++ Overview15

Operator Overloading



gamedesigninitiative
at cornell university

the

� Subclassing similar to Java
� Inherits methods, fields
� Protected limits to subclass

� Minor important issues
� Header must import subclass
� super() syntax very different
� See tutorials for more details

� Weird C++ things to avoid
� No multiple inheritance!
� No private subclasses

class A {
public:

float x;

A(float x) { this->x = x; }
…

};

class B : public A {
public:

float y;

B(float x, float y) : A(x) {
this->y = y;

}
…

};
C++ Overview16

Subclasses



gamedesigninitiative
at cornell university

the

� Subclassing similar to Java
� Inherits methods, fields

� Protected limits to subclass

� Minor important issues
� Header must import subclass
� super() syntax very different
� See tutorials for more details

� Weird C++ things to avoid
� No multiple inheritance!
� No private subclasses

class A {
public:

float x;

A(float x) { this->x = x; }
…

};

class B : public A {
public:

float y;

B(float x, float y) : A(x) {
this->y = y;

}
…

};
C++ Overview17

Subclasses

Weird things 
if you make 

it private

Like Java
call to super



gamedesigninitiative
at cornell university

the

C++ and Polymorphism

� Polymorphism was a major topic in CS 2110
� Variable is reference to interface or base class
� Object itself is instance of a specific subclass
� Calls to methods are those implementated in subclass

� Example:
� List<int> list = new LinkedList<int>();
� list.add(10); // Uses LinkedList implementation

� This is a major reason for using Java in CS 2110
� C++ does not quite work this way

C++ Overview18



gamedesigninitiative
at cornell university

the

� Cannot change stack object
� Variable assignment copies
� Will lose all info in subclass

� Only relevant for pointers
� C++ uses static pointer type
� Goes to method for type

� Why did they do this?
� No methods in object data
� Reduces memory lookup
� But was it worth it?

class A {
public:

int foo() {return 42;}
};

class B : public A {
public:

int foo() {return 9000; }
};

B* bee = new B();

x = bee->foo();    // x is 9000

A* aay = (A*)bee;

y = aay->foo();    // y is 42!!!

C++ Overview19

C++ and Polymorphism



gamedesigninitiative
at cornell university

the

� Purpose of virtual keyword
� Add to method in base class
� Says “will be overridden”

� Use optional in subclass
� Needed if have subsubclass
� Or if not further overridden

� Hard core C++ users hate
� Causes a performance hit
� Both look-up and storage
� But not a big deal for you

class A {
public:

virtual int foo() {return 42;}
};

class B : public A {
public:

int foo() override {return 9000; }
};

B* bee = new B();

x = b->foo();    // x is 9000

A* aay = (A*)bee;

y = a->foo();    // y is 9000

C++ Overview20

Fixing C++ Polymorphism



gamedesigninitiative
at cornell university

the

Usage

� Class has type parameter <>
� Add type at allocation time
� v = new std::vector<int>();

� Required in the C++ STL
� std::vector, std::deque
� std::unordered_map

� Also in our asset manager
� Associate a loader with type
� amgr->attach<Font>(loader);

C++ Overview21

Templates: Like Generics But Not

Definition

� Preface class with template

� template <class T>
class A{

T x
const T& getX() { return x;}
void setX(T v)    { x = v;}

};

� No .cpp file! Only .h
� Import header to use class
� Compiled at instantiation



gamedesigninitiative
at cornell university

the

� Class that holds a pointer
� Tracks the pointer usage
� Can delete pointer for you
� Access pointer with get()

� Type is templated type
� std::shared_ptr<Point>
� std::shared_ptr<Font>

� This requires C++11
� Which you should use…
� Check your IDE settings

C++ Overview22

Application: Smart Pointers

id2

x 1.0

y 2.0

z 3.0

id1p

Point

id1

ptr id2

shared_ptr



gamedesigninitiative
at cornell university

the

Heap Allocation

void func() {

Point* p = new Point(1,2,3);

…

delete p;

}

� Must remember to delete

� Otherwise will memory leak

C++ Overview23

Smart Pointers and Allocation

Smart Pointer

void func() {

shared_ptr<Point> p;

p = make_shared<Point>(1,2,3);

…

}

� Deletion is not necessary

� Sort-of garbage collection



gamedesigninitiative
at cornell university

the

Heap Allocation

void func() {

Point* p = new Point(1,2,3);

…

delete p;

}

� Must remember to delete

� Otherwise will memory leak

C++ Overview24

Smart Pointers and Allocation

Smart Pointer

void func() {

shared_ptr<Point> p;

p = make_shared<Point>(1,2,3);

…

}

� Deletion is not necessary

� Sort-of garbage collection

More on this in Memory Lectures



gamedesigninitiative
at cornell university

the

Normal Pointers

B* b;    // The super class
A* a;    // The subclass

Acceptable:
b = new B();
a = (A*)b;

Better:
b = new B();
a = dynamic_cast<A*>(b);

C++ Overview25

Typecasting and Smart Pointers

Smart Pointers

shared_ptr<B> b;    // Contains B*
shared_ptr<A> a;    // Contains A*

Bad:
b = make_shared<B>();
a = (shared_ptr<A>)b;

Good:
b = make_shared<B>();
a = dynamic_pointer_cast<A>(b);



gamedesigninitiative
at cornell university

the

Normal Pointers

B* b;    // The super class
A* a;    // The subclass

Acceptable:
b = new B();
a = (A*)b;

Better:
b = new B();
a = dynamic_cast<A*>(b);

C++ Overview26

Typecasting and Smart Pointers

Smart Pointers

shared_ptr<B> b;    // Contains B*
shared_ptr<A> a;    // Contains A*

Bad:
b = make_shared<B>();
a = (shared_ptr<A>)b;

Good:
b = make_shared<B>();
a = dynamic_pointer_cast<A>(b);

Polymorphism is messy on Smart Pointers



gamedesigninitiative
at cornell university

the

C++ Overview27

Closures: C++ Lambda Functions

� Type: std::function<T>
� Type is function signature
� Allows function in variable
� Example Declaration:

std::function<void(int)> a;

� Important for callbacks
� Example: Collision listener
� See WorldController class

� This requires C++11
� Which you should use…
� Check your IDE settings

Variable Capture Rules

int x = 0;

std::function<int(int)> a = [=](int y) 
{ return x+y; };

std::function<int(int)> b =[&](int y)
{ return x+y; };

x = 5;

int y = a(4);
int z = b(4);



gamedesigninitiative
at cornell university

the

C++ Overview28

Closures: C++ Lambda Functions

� Type: std::function<T>
� Type is function signature
� Allows function in variable
� Example Declaration:

std::function<void(int)> a;

� Important for callbacks
� Example: Collision listener
� See WorldController class

� This requires C++11
� Which you should use…
� Check your IDE settings

Variable Capture Rules

int x = 0;

std::function<int(int)> a = [=](int y) 
{ return x+y; };

std::function<int(int)> b =[&](int y)
{ return x+y; };

x = 5;

int y = a(4);
int z = b(4);

free variable



gamedesigninitiative
at cornell university

the

C++ Overview29

Closures: C++ Lambda Functions

� Type: std::function<T>
� Type is function signature
� Allows function in variable
� Example Declaration:

std::function<void(int)> a;

� Important for callbacks
� Example: Collision listener
� See WorldController class

� This requires C++11
� Which you should use…
� Check your IDE settings

Variable Capture Rules

int x = 0;

std::function<int(int)> a = [=](int y) 
{ return x+y; };

std::function<int(int)> b =[&](int y)
{ return x+y; };

x = 5;

int y = a(4);   // Value is 4
int z = b(4);   // Value is 9

free variable

copies x

references x



gamedesigninitiative
at cornell university

the

Summary

� C++ has a lot of similarities to Java
� Java borrowed much of its syntax, but “cleaned it up”

� Memory in C++ is a lot trickier
� Anything allocated with new must be deleted
� C++ provides many alternatives to avoid use of new

� Classes in C++ have some important differences
� Can be copied between stacks if written correctly
� C++ supports operator overloading for math types
� C++ needs special keywords to support polymorphism

C++ Overview30


