
ρ
CS4120/4121/5120/5121—Spring 2023

Rho Language Specification
Cornell University

Version of April 10, 2023

Thanks to the hard work and brilliant engineering of your team, Eta has been gaining market share.
However, your customers are demanding the ability to create more interesting data structures. An extended
version of the language, called Rho, has been been designed. Your task is to extend the implementation of
Eta with the new features, and to add some further language extension of your own design.

Rho is backward-compatible with Eta, so this language description focuses on the differences. The
original Eta spec is still available.

0 Changes

• No changes yet.

1 Record definitions

An Rho program may contain declarations and definitions of record types in addition to function definitions.
A record contains some number of named fields, each with its own type.

The following code defines a record type named Point and an associated creator function createPoint:

1 record Point {

2 x,y: int

3 }

4

5 createPoint(x: int, y: int): Point {

6 return Point(x, y)
7 }

Notice that the fields x and y can both be declared at once to have the type int. The same abbreviated
syntax can now also be used for local and global variable declarations, though no initializer expression may
be provided in that case.

Fields of a record can be accessed with the usual dot notation, e.g., given a variable p of type Point, p.x
signifies its field x.

As the example shows, the name of a record type can be used as a function to construct new values of the
record. This function expects to receive as many arguments as there are fields, in the order they are declared.

Records are passed by reference. For example, the following function would swap the x and y coordinates
of any Point passed to it:

1 swap(p: Point) {

2 t:int = p.x

3 p.x = p.y

4 p.y = t

5 }

Field definitions may optionally be separated by a semicolon.

2 Record declarations

All fields of a record type are visible everywhere inside its defining module (i.e., source file). To be used
from a different module, the record type must be declared in an interface. A record type declaration looks like

CS4120/4121/5120/5121 Spring 2023 1/4 Rho Language Specification

http://www.cs.cornell.edu/courses/cs4120/2023sp/project/language.pdf

a record type definition except that it may declare only a prefix of the full set of fields.
For example, we might define an interface file for the Point type, hiding the x and y fields from other

modules:

1 // A 2D Point with integer coordinates (x,y).

2 record Point {}

3

4 // Create the point (x,y).

5 createPoint(x: int, y: int): Point

6

7 // Get the X and Y coordinates of the point

8 pointX(p: Point): int

9 pointY(p: Point): int

Field declarations may optionally be separated by a semicolon.

3 Modules and interfaces

The extension .rh is used for files containing module definitions and the extension .ri is used for interface
files. Therefore, the statement use my_module appearing in a module causes the compiler to look for the
interface of that module in the file my_module.ri.

The syntax of interfaces has also been extended so that, like modules, they can begin with “use” state-
ments. If a module uses an interface, it also implicitly uses every interface that is used by that interface. It is
legal for an interface to be used by a module along multiple “use” paths.

If a module is defined in a file a_module.rh, the compiler automatically looks for an interface in file
a_module.ri, exactly as though the module had contained a statement use a_module. However, such an
interface need not exist.

If a module that defines a record type T references (either explicitly or implicitly) an interface that declares
type T, the type definition must match the fields given in the declaration. The fields and their types declared
in the interface must be the same as those defined in the module, or a prefix.

A module does not need to have an interface. Further, even if there is an interface, not every type,
procedure, or function in the module needs to be declared in that interface. Undeclared module components
are analogous to private classes or private methods in Java because they are not visible outside their own
module. However, everything declared in the interface must be defined in the module.

Globals, including record types and functions, are in scope throughout their defining module and
throughout any module that uses an interface that declares them. For example, a record type can appear in
its own declaration, e.g.:

1 record Node {

2 value: int

3 next: Node

4 }

However, global variables cannot be declared in interfaces, so they are private to their module. Different
global variables in different modules are different variables even if they happen to be declared with the same
name.

3.1 Null

Like C and Java, Rho incorporates Hoare’s “Billion-Dollar Mistake”. The special value null is a member of
all record types and also a member of all array types. It is the default initialization value for all variables
with record or array type, including global variables and array elements.

It is a run-time error to perform any operation on null that is specific to records or arrays. The value
nullmust be implemented as a pointer to memory location 0. A reference to this memory location will cause

CS4120/4121/5120/5121 Spring 2023 2/4 Rho Language Specification

https://en.wikipedia.org/wiki/Tony_Hoare#Apologies_and_retractions

a page fault that will halt the program. This is an adequate implementation of the run-time checking for null
values.

3.2 Other defaults

The default initialization values for int and bool are 0 and false, respectively.

4 New operators

The equality comparison == and the inequality comparison != can be used on two value of the same record
type T. These comparisons are implemented as pointer comparisons, much like in Java. However, the special
value null can always be compared against any value with record or array type.

5 Other extensions

5.1 Assignment

To make type-checking convenient, we introduce a new judgment Γ ⊢ e : τ lvalue, which means that e is an
expression that can be assigned values of type τ (an lvalue). With this rule, we can rewrite the (ASSIGN) rule
in a more generic form that encompasses the old rule and also the old (ARRASSIGN) rule:

Γ ⊢ e1 : τ lvalue Γ ⊢ e2 : τ

Γ ⊢ e1 = e2 : Γ
(ASSIGN)

The lvalues are variables, array elements, and fields:

Γ(x) = var τ

Γ ⊢ x : τ lvalue
(VARLVALUE)

Γ ⊢ e1 : τ[] Γ ⊢ e2 : int
Γ ⊢ e1[e2] : τ lvalue

(ARRLVALUE)

Γ ⊢ e1 : C record C { . . . f:τ . . . } ∈ Γ
Γ ⊢ e1. f : τ lvalue

(FIELDLVALUE)

5.2 Break statement

To make it easier to end loops, a break statement similar to that in C and Java has been added. As in these
languages, its effect is to immediately terminate the closest lexically enclosing loop. As with the return
statement, its type is void, but the break statement is legal only if lexically enclosed by a loop. This rule
could be modeled in the type system by adding a binding β : unit to the context of while loop bodies.

6 ABI

To allow different implementations to interoperate, the ABI specifies that fields of records are laid out in the
order they are declared, with each field taking up one 64-bit word. The representation of a record value is a
pointer to its first field.

Top-level functions that take or return record references should encode their types into function names as
follows:

1. “r”
2. A number giving the length of the unescaped type name.
3. The name, with underscores escaped in the usual fashion.

CS4120/4121/5120/5121 Spring 2023 3/4 Rho Language Specification

For example, a function with the signature average(a: Point, b: Point): Pointwould have its name
encoded as _Iaverage_r5Pointr5Pointr5Point.

CS4120/4121/5120/5121 Spring 2023 4/4 Rho Language Specification

	Changes
	Record definitions
	Record declarations
	Modules and interfaces
	Null
	Other defaults

	New operators
	Other extensions
	Assignment
	Break statement

	ABI

