
CS4120/4121/5120/5121—Spring 2023
Programming Assignment 1

Implementing Lexical Analysis
Due: Monday, February 6, 11:59pm

This programming assignment requires you to implement a lexer (also called a scanner or a
tokenizer) for the Eta programming language. As discussed in Lecture 2, a lexer provides a stream
of tokens (also called symbols or lexemes) given a stream of characters.

0 Changes

• The test harness has been renamed from xth to eth in §6. The link to the test harness has also
been updated.
• Update command line interface section to clarify that ./etac is an acceptable invocation.
• Change mistake in reported position of ) in example.

1 Instructions

1.1 Grading

Solutions will be graded on design, correctness, and style. A good design makes the implementation
easy to understand and maximizes code sharing. A correct program compiles without errors or
warnings, and behaves according to the requirements given here. A program with good style is clear,
concise, and easy to read.

A few suggestions regarding good style may be helpful. You should use brief but mnemonic
variable names and proper indentation. Keep your code within an 80-character width. If writ-
ing Java, most methods should be accompanied by Javadoc-compliant specifications, and class
invariants should always be documented. Other comments may be included to explain nonobvious
implementation details. Use similar best practices for other programming languages, but be sure to
consult with the staff before choosing a language other than Java 11.

1.2 Partners

You will work in a group of 3–4 students for this assignment. Find your partners as soon as possible,
and set up your group on CMS so we know who has partners and who does not. Ed also has support
for soliciting partners. If you are having trouble finding partners, ask the course staff, and we will
try to find you a group in a fair way.

Remember that the course staff is happy to help with problems you run into. Read all Ed posts
and ask questions that have not been addressed, attend office hours, or set up meetings with any
course staff member for help.

CS4120/4121/5120/5121 Spring 2023 1/7 Programming Assignment 1

http://www.cs.cornell.edu/courses/cs4120/2023sp/project/language.pdf


1.3 Package names

Please ensure that all Java code you submit is contained within a package (or similar, for other
languages) whose name contains the NetID of at least one of your group members. Subpackages
under this package are allowed and strongly encouraged. They can be named however you would
like.

1.4 Tips

This assignment is much smaller than future assignments: it is intended primarily as a warmup that
gives your group the chance to practice working together. Later assignments will stress your ability
to work effectively as a group, so now is a good time to set up the infrastructure and collaboration
style that you will use for the rest of the semester. Some tips:

• Meet with your partners as early as possible to work out the design and to discuss the responsi-
bilities for the assignment. Keep meeting and talking as the project progresses. Be prepared for
your meetings. Be ready to present proposals to your partners for what to do, and to explain the
work you have done. Good communication is essential.
• You should partition the assignment into parts that can be worked on largely separately. Avoid

the temptation to do the assignment more “efficiently” by having a subset of the group do all
the work. To succeed at the course project, your group needs to figure out how to work together
effectively—and the sooner, the better.
• A good way to partition an assignment into parts that can be worked on separately is to agree as a

group on, first, what the different modules will be, and further, exactly what their interfaces are,
including detailed specifications. The individual modules can then be implemented independently
with confidence that integrating them will be straightforward.

2 Design overview document

We expect your group to submit an overview document. The Overview Document Specification
outlines our expectations. Writing a clear document with good use of language is important.

These are key topics to include in your design overview document:

• Have you thought about the key data structures in this assignment?
• Have you thought through the key algorithms and identified implementation challenges?
• Have you thought about your implementation strategy and division of responsibilities between

the group members?
• Do you have a testing strategy that covers the possible inputs and the different kinds of function-

ality you are implementing?

CS4120/4121/5120/5121 Spring 2023 2/7 Programming Assignment 1

http://www.cs.cornell.edu/courses/cs4120/2023sp/hw/overview-requirements.html


3 Version control

Working with group members effectively is a key learning goal for this project. To facilitate this
goal, you must use version control to manage your partnership. Large modern software is always
managed with version control. You may choose to use any system you like; common industry
standards include Git, Subversion, and Mercurial.

As always, making your code public would be a violation of academic integrity, so be sure
to use a private repository. Cornell Github is one option well suited for this class, since you are
allowed unlimited private repositories for free.

You must submit a file pa1.log containing your group’s commit history. This is not extra work,
as version control systems already provide this functionality. While it may require some learning,
using version control is a valuable skill to have. In the short term, you will reap the benefits as you
proceed further into the project.

Modifying the log file in any way will be considered a violation of academic integrity. If you
feel a significant clarification is needed, instead briefly mention it in your overview document. (For
example, if you employ pair programming for elements of the assignment (not a bad idea!), you
may wish to clarify this in your overview document, as only one member would appear on the
commit history for that work.)

4 Lexer

We encourage you to use a lexer generator such as JFlex in your implementation, but it is not
required. If you do use a lexer generator, you may wish to consider using the adapter pattern to aid
you in your implementation. A example grammar file for JFlex, example.flex, is included in the
release folder that you might find useful to peruse.

5 Command-line interface

A command-line interface is the primary channel for users to interact with your compiler. As your
compiler matures, your command-line interface will support a growing number of possible options.

A general form for the command-line interface is as follows:

./etac [options] <source files>

For this assignment, at least the following three options must be supported:

• --help: Print a synopsis of options.
A synopsis of options lists all possible options along with brief descriptions. No source files

are required if this option is specified. Invoking etac without any source files should also print a
synopsis. To see an example of a synopsis, run javac from the command line.

• --lex: Generate output from lexical analysis.
For each source file named filename.eta, a diagnostic output file named filename.lexed

is generated to provide the result of lexing the source file. Each line in the output file corresponds
to each token in the source file in the following format:

CS4120/4121/5120/5121 Spring 2023 3/7 Programming Assignment 1

https://github.coecis.cornell.edu
http://wwww.jflex.de/
http://en.wikipedia.org/wiki/Adapter_pattern


<line>:<column> <token-type>

where <line> and <column> indicate the beginning position of the token, and <token-type>
is one of the following:

– id <name> for an identifier
– integer <value> for an integer constant
– character <value> for a character constant, where value excludes enclosing quotes
– string <value> for a string constant, where value excludes enclosing quotes
– <symbol> for a symbol such as parentheses, punctuation, and operators
– <keyword> for a keyword, including names and values such as int and true

Non-printable and special characters in character and string literal constants should be escaped in
the output, as well as Unicode character escapes as described in the Eta Language Specification,
but ordinary printable ASCII characters (e.g., “d”) should not be. Comments and whitespace
should not appear in the output.

A lexical error should result in the following line in the output file:

<line>:<column> error:<description>

where <description> details the error. All valid tokens prior to the location of the error should
be reported as above.

Table 1 shows a few examples of expected results.

• -D <path>: Specify where to place generated diagnostic files.
If given, the compiler should place generated diagnostic files (from the --lex option), in the

directory relative to this path. The default is the current directory in which etac is run.
For example, if this path is p and the file to be generated is a/r/se.lexed, the compiler

should place this file at p/a/r/se.lexed.

To parse command-line arguments, it is common to use a library instead of implementing such
functionality manually (although it’s perfectly fine and not difficult to implement it manually).
Below are some common libraries for various languages that you might find useful:

• Java: Commons CLI, Argparse4j, args4j, many more are listed here
• OCaml: Command module in Jane Street Core (see the Real World Ocaml chapter)
• Haskell: optparse-applicative
• Scala: scopt, scallop

6 Test harness

The test harness is a framework for testing your implementation and for grading your submissions.
Named eth, the test harness has been tested to work in a 64-bit linux virtual-machine environment.
The VM distribution contains instructions for setting up the VM on your machine. (If this link is
down, the VM has not yet been released. It is coming soon.)

The VM setup script will download and install the test harness, along with other necessary
components, such as Java, JFlex, Maven, and ant, to build and run your compiler. The full

CS4120/4121/5120/5121 Spring 2023 4/7 Programming Assignment 1

http://www.cs.cornell.edu/courses/cs4120/2023sp/project/language.pdf
http://commons.apache.org/proper/commons-cli/
https://argparse4j.github.io/
https://github.com/kohsuke/args4j
http://jewelcli.lexicalscope.com/related.html
https://dev.realworldocaml.org/command-line-parsing.html
http://hackage.haskell.org/package/optparse-applicative
https://github.com/scopt/scopt
https://github.com/scallop/scallop
http://www.cs.cornell.edu/courses/cs4120/2023sp/project/eth.tar.gz
http://www.cs.cornell.edu/courses/cs4120/2023sp/project/DockerREADME


Content of input file Content of output file
use io

main(args: int[][]) {

print("Hello, Worl\x{64}!\n")

c3po: int = ’x’ + 47;

r2d2: int = c3po // No Han Solo

}

1:1 use

1:5 id io

3:1 id main

3:5 (

3:6 id args

3:10 :

3:12 int

3:15 [

3:16 ]

3:17 [

3:18 ]

3:19 )

3:21 {

4:3 id print

4:8 (

4:9 string Hello, World!\n

4:31 )

5:3 id c3po

5:7 :

5:9 int

5:13 =

5:15 character x

5:19 +

5:21 integer 47

5:23 ;

6:3 id r2d2

6:7 :

6:9 int

6:13 =

6:15 id c3po

7:1 }
x:bool = 4all

x = ’’

this = does not matter

1:1 id x

1:2 :

1:3 bool

1:8 =

1:10 integer 4

1:11 id all

2:1 id x

2:3 =

2:5 error:Invalid character constant

Table 1: Examples of running etac with --lex option

CS4120/4121/5120/5121 Spring 2023 5/7 Programming Assignment 1



list of currently available features can be found in root-bootstrap.sh in the VM distribution.
Additional components may be requested on Ed.
eth is installed in the eth directory and can be invoked from the command line. A general form

for the eth command-line interface is as follows:

eth [options] <test script>

Two options are of particular interest:

• -compilerpath <path>: Specify where to find the compiler
• -testpath <path>: Specify where to find the test files

For the full list of currently available options, invoke eth.
An eth test script specifies a number of test cases to run. The directory eth/tests/pa1

contains a sample test script (ethScript), along with several test cases. ethScript also lists the
syntax of an eth test script.

To request eth to build your compiler, a command build can begin the test script. Upon
receiving a build command, eth will invoke command etac-build in the compiler directory.
etac-build is responsible for building the compiler in its entirety. Currently, eth will execute all
commands in a test script, even if the build fails. Therefore, if you already have your compiler built
by some other means, later tests can still succeed even if your etac-build fails or is unavailable.
For each test case, eth will invoke command etac in the compiler directory.

The result of running the test harness is summarized in the last line of the output, which looks
like this:

ethScript: ? out of 16 tests succeeded.

The details for each test case can be found prior to the last line.
eth was used successfully in the last iteration of the course, but bugs are always possible. Please

report errors, request additional features, or give feedback on Ed.

7 Submission

You should submit these items on CMS:

• overview.txt/pdf: Your overview document for the assignment. This file should contain
your names, your NetIDs, all known issues you have with your implementation, and the names
of anyone you have discussed the homework with. It should also include descriptions of any
extensions you implemented.
• A zip file containing these items:

– Source code: You should include everything required to compile and run the project. Please
ensure that the directory structure of your source files is maintained within the archive so that
your code can be compiled upon extraction.
If you use a lexer generator, please include the lexer input file, e.g., *.flex. Your etac-build
should use this file to generate source code, and you should not submit the corresponding
generated source code file (e.g. .java).

CS4120/4121/5120/5121 Spring 2023 6/7 Programming Assignment 1



Your build process must not download anything from the internet. If your code depends on any
third-party libraries, they must be included in the submission.
Do not submit compiled versions of your own code (submitting precompiled libraries is OK).

– Tests: You should include all your test cases and test code that you used to test your program.
Be sure to mention where these files are in your overview document.

For smaller libraries, it is often easy and effective to include the source code directly, but be
sure to make clear what is library code, e.g. by package name. JAR files also work well, but
sometimes do not include Javadoc and are less well integrated with your IDE. Your mileage may
vary.
Do not include any derived, IDE, or SCM-related files or directories such as .class, .jar
.classpath, .project, .git, and .gitignore, unless they are precompiled versions of third
party libraries.
It is strongly encouraged that you use the zip CLI tool on a *nix platform, such as the course
VM. Do not use Archive Utility or Finder on macOS as they include extraneous dotfiles, and do
not use a Windows tool that fails to maintain the executable bit of your etac and etac-build
scripts.
It is suggested that you write a small (shell) script to pack your submission zip file, since you will
be using it repeatedly throughout the course.
• pa1.log: A dump of your commit log from the version control system of your choice.

CS4120/4121/5120/5121 Spring 2023 7/7 Programming Assignment 1


	Changes
	Instructions
	Grading
	Partners
	Package names
	Tips

	Design overview document
	Version control
	Lexer
	Command-line interface
	Test harness
	Submission

