
CS4120/4121/5120/5121—Spring 2022
Programming Assignment 3
Implementing Semantic Analysis

Due: Friday, March 4, 11:59pm

This programming assignment requires you to implement a type checker for the Xi programming
language. Given an AST of a syntactically valid Xi program, the type checker will see if it makes
sense according to the static semantics of the language. If there are any type errors, it should produce
descriptive error messages. If there are not, it should annotate the AST with information computed
during its work, and also construct symbol tables describing all variables. We have provided a
formalization of the Xi type system to help you get started.

0 Changes

• Clarified the contents of the .typed file in case of a parse error.

1 Instructions

1.1 Grading

Solutions will be graded on design, correctness, and style. A good design makes the implementation
easy to understand and maximizes code sharing. A correct program compiles without errors or
warnings, and behaves according to the requirements given here. A program with good style is clear,
concise, and easy to read.

A few suggestions regarding good style may be helpful. You should use brief but mnemonic vari-
able names and proper indentation. Keep your code within an 80-character width. Methods should
be accompanied by Javadoc-compliant specifications, and class invariants should be documented.
Other comments may be included to explain nonobvious implementation details.

1.2 Partners

You will work in a group of 3–4 students for this assignment. This should be the same group as in
the last assignment.

Remember that the course staff is happy to help with problems you run into. Read all Ed posts
and ask questions that have not been addressed, attend office hours, or set up meetings with any
course staff member for help.

1.3 Package names

Please ensure that all Java code you submit is contained within a package whose name contains the
NetID of at least one of your group members. Subpackages under this package are allowed; they
can be named however you would like.

CS4120/4121/5120/5121 Spring 2022 1/6 Programming Assignment 3

http://www.cs.cornell.edu/courses/cs4120/2022sp/project/language.pdf
http://www.cs.cornell.edu/courses/cs4120/2022sp/project/language.pdf
http://www.cs.cornell.edu/courses/cs4120/2022sp/project/types.pdf


1.4 Tips

The typing rules for Xi contain most of the information you need to implement this assignment.
The type information you compute will be useful in code generation, not just for catching errors.
Similarly, symbol tables are useful when allocating memory for local variables. Therefore, try to
preserve information you will need in later phases.

As the project goes on, it will be increasingly important that your project group is functioning
effectively as a team. Everyone should be contributing significantly. If this is not happening, your
group should talk about how to be more effective.

2 Design overview document

We expect your group to submit an overview document. The Overview Document Specification
outlines our expectations.

3 Building on previous programming assignments

Use your lexer from PA1 and your parser from PA2. Part of your task for this assignment is to fix
any problems that you had in the previous assignments. Discuss these problems in your overview
document, and explain briefly how you fixed them.

4 Version control

As in the last assignment, you must submit file pa3.log that lists the commit history from your
group since your last submission.

5 Type checker

Each source file should be checked for lexical, syntactic, and semantic errors. Your compiler should
behave as follows:

• If there is a lexical, syntax, or semantic error within the source, the compiler should indicate this
by printing to standard output (System.out) an error message that includes the kind (lexical,
syntax, or semantic) and the position of the error, in the following format:

<kind> error beginning at <filename>:<line>:<column>: <description>

where <kind> is one of Lexical, Syntax, and Semantic.
• If the program is semantically valid, the compiler should terminate normally (exit code 0) without

generating any standard output, unless certain options are specified on the command line. (See
Section 7 for details.)

CS4120/4121/5120/5121 Spring 2022 2/6 Programming Assignment 3

http://www.cs.cornell.edu/courses/cs4120/2022sp/hw/overview-requirements.html


6 Interface files

In previous assignments, the compiler only needed to read the specified input file(s). To type-check
a source file, however, it will be necessary in general to read interface files specified with the use
statement. Any functions declared in these interface files may be used in the source file, with the
signatures declared in the interface file.

7 Command-line interface

A command-line interface is the primary channel for users to interact with your compiler. As your
compiler matures, your command-line interface will support a growing number of possible options.

A general form for the command-line interface is as follows:

xic [options] <source files>

Unless noted below, the expected behaviors of previously available options are as defined in
the previous assignment. xic should support any reasonable combination of options. For this
assignment, the following options are possible:

• --help: Print a synopsis of options.
• --lex: Generate output from lexical analysis.
• --parse: Generate output from syntactic analysis.
• --typecheck: Generate output from semantic analysis.

For each source file given as path/to/file.xi in the command line, an output file named
path/to/file.typed is generated to provide the result of type checking the source file. The
compiler should be able to handle both relative and absolute paths for all filename arguments.

If the source file has a parse error or is a semantically invalid Xi program, the content of the
.typed file should contain only the following line:

<line>:<column> error:<description>

where <line> and <column> indicate the beginning position of the error, and <description>
details the error.

If the source file is a semantically valid Xi program, the content of the .typed file should
contain only the following line:

Valid Xi Program

Table 1 shows a few examples of expected results.
• -sourcepath <path>: Specify where to find input source files.
• -libpath <path>: Specify where to find library interface files.

If given, the compiler should find library interface files in the directory relative to this path.
The default is the current directory in which xic is run.
• -D <path>: Specify where to place generated diagnostic files.

CS4120/4121/5120/5121 Spring 2022 3/6 Programming Assignment 3



Content of input file Content of output file
use io

main(args: int[][]) {

print("Hello, Worl\x64!\n")

c3po: int = ’x’ + 47;

r2d2: int = c3po // No Han Solo

}

Valid Xi Program

foo(): bool, int {

expr: int = 1 - 2 * 3 * -4 *

5pred: bool = true & true | false;

if (expr <= 47) { }

else pred = !pred

if (pred) { expr = 59 }

return pred, expr;

}

bar() {

_, i: int = foo()

b: int[i][]

b[0] = {1, 0}

}

Valid Xi Program

valid(): int[] {

return "Valid Xi Program";

}

Valid Xi Program

foo(x: int): bool {

b:bool = x + 47

return b

}

2:12 error:Cannot assign int to bool

foo(x: int): bool {

return 47 + (((false & (((x))))))

}

2:29 error:Operands of & must be bool

foo(): bool { return baz() } 1:22 error:Name baz cannot be resolved

foo(a: bool[]) {

}

bar() {

foo({25 + 47})

}

4:7 error:Expected bool[], but found int[]

foo(): bool {

x:int = 2

b:bool = x != 3

}

1:13 error:Missing return

foo() { _ = 2 } 1:13 error:Expected function call

foo(): int, int, int { return 0, 1, 2 }

bar() { x:int, _ = foo() }

2:9 error:Mismatched number of values

foo(): int, int, int { return 0, 1, 2 }

bar() { x:int, b:bool, _ = foo() }

2:16 error:Expected int, but found bool

foo() { }

bar() { x:int = foo() }

2:17 error:foo is not a function

Table 1: Examples of running xic with --typecheck option

CS4120/4121/5120/5121 Spring 2022 4/6 Programming Assignment 3



8 Build script

Your compiler implementation should provide a build script called xic-build in the compiler path
that can be run on the command-line interface. The build script must be in the root directory your
submission zip file. This script should compile your implementation and produce files required
to run xic properly. Your build script should terminate with exit code 0 if your implementation
successfully compiles, or 1 otherwise.

Please try to avoid downloading third-party libraries from the internet when building your
compiler. Either include these with your submission, or request an installation on the virtual
machine.

The test harness will assume the availability of your build script and fail grading if the build
script fails to build your compiler.

9 Test harness

xth has been updated to contain test cases for this assignment and to support testing semantic
analysis.

To update xth, run the update script in the xth directory on the VM.
A general form for the xth command-line invocation is as follows:

xth [options] <test-script>

The following options are of particular interest:

• -compilerpath <path>: Specify where to find the compiler
• -testpath <path>: Specify where to find the test files
• -workpath <path>: Specify the working directory for the compiler

For the full list of currently available options, invoke xth.
The best way to run xth with the provided test cases is from the home directory of the VM,

using the following form of command:

xth -compilerpath <xicpath> -testpath <tp> -workpath <wp> <xthScript>

where

• <xicpath> is the path to the directory containing your build script and command-line interface.
• <tp> is of the form xth/tests/pa#/, where # is the programming assignment number.
• <wp> is preferably a fresh, nonexistent compiler such as shared/xthout.
• <xthScript> is of the form xth/tests/pa#/xthScript, where # is the programming assign-

ment number.

An xth test script specifies a number of test cases to run. Once the updated xth is released,
directory xth/tests/pa3 will contain a sample test script (xthScript), along with several test
cases. xthScript also lists the syntax of an xth test script.

CS4120/4121/5120/5121 Spring 2022 5/6 Programming Assignment 3



If any errors occur in xth or you wish to request additional features, please reach out to the
course staff on Ed.

10 Submission

You should submit these items on CMS:

• overview.txt/pdf: Your overview document for the assignment. This file should contain
your names, your NetIDs, all known issues you have with your implementation, and the names
of anyone you have discussed the homework with. It should also include descriptions of any
extensions you implemented.
• A zip file containing these items:

– Source code: You should include all source code required to compile and run the project.
Please ensure that the directory structure of your source files is maintained within the archive
so that your code can be compiled upon extraction. If your code depends on any third-party
libraries, please include compilation instructions in your overview document.
If you use a lexer generator, please include the lexer input file, e.g., *.flex. Please include
your parser generator input file, e.g., *.cup. Your xic-build should use these files to generate
source code, and you should not submit the corresponding generated source code files (e.g.
*.java). Do not submit compiled versions of your own code (submitting precompiled libraries
is OK).

– Tests: You should include all your test cases and test code that you used to test your program.
Be sure to mention where these files are and to describe your testing strategy in your overview
document.

Do not include any non-source files or directories such as .class, .classpath, .project,
.git, and .gitignore.
• pa3.log: A dump of your commit log since your last submission from the version control system

of your choice.

CS4120/4121/5120/5121 Spring 2022 6/6 Programming Assignment 3


	Changes
	Instructions
	Grading
	Partners
	Package names
	Tips

	Design overview document
	Building on previous programming assignments
	Version control
	Type checker
	Interface files
	Command-line interface
	Build script
	Test harness
	Submission

