
CS4120/4121/5120/5121—Spring 2020
Xi Type System Specification

Cornell University
Version of February 13, 2020

0 Changes

• None yet; watch this space.

1 Types

The Xi type system uses a somewhat bigger set of types than can be expressed explicitly in the source
language:

τ ::= int
| bool
| τ[]

T ::= τ

| unit
| (τ1, τ2, . . . , τn)

n≥2

R ::= unit
| void

σ ::= var τ

| ret T

| fn T → T′

Ordinary types expressible in the language are denoted by the metavariable τ, which can be int, bool, or an
array type.

The metavariable T denotes an expanded notion of type that represents possible types in procedures,
functions, and multiple assignments. It may be an ordinary type, unit, or a tuple type.

The type unit does not appear explicitly in the source language. This type is given to an element on the
left-hand side of multiple assignments that uses the _ placeholder, allowing their handling be integrated
directly into the type system. The unit type is also used to represent the result type of procedures.

Tuple types represent the parameter types of procedures and functions that take multiple arguments, or
the return types of functions that return multiple results.

The metavariable R represents the outcome of evaluating a statement, which can be either unit or void.
The unit type is the the type of statements that might complete normally and permit the following statement
to execute. The type void is the type of statements such as return that never pass control to the following
statement. The void type should not be confused with the C/Java type void, which is actually closer to
unit.

The set σ is used to represent typing-environment entries, which can either be normal variables (bound
to var τ for some type τ), return types (bound to ret T), functions (bound to fn T → T′ where T′ , unit),
or procedures (bound to fn T → unit), where the “result type” unit indicates that the procedure result
contains no information other than that the procedure call terminated.

2 Subtyping

The subtyping relation on T is the least partial order consistent with this rule:

τ ≤ unit

For now, however, there is no subsumption rule, so subtyping matters only where it appears explicitly.

3 Type-checking expressions

To type-check expressions, we need to know what bound variables and functions are in scope; this is
represented by the typing context Γ, which maps names x to types σ.

The judgment Γ ` e : T is the rule for the type of an expression; it states that with bindings Γ we can
conclude that e has the type T.

CS4120/4121/5120/5121 Spring 2020 1/5 Xi Type System Specification

We use the metavariable symbols x or f to represent arbitrary identifiers, n to represent an integer literal
constant, string to represent a string literal constant, and char to represent a character literal constant. Using
these conventions, the expression typing rules are:

Γ ` n : int Γ ` true : bool Γ ` false : bool Γ ` string : int[] Γ ` char : int

Γ(x) = var τ

Γ ` x : τ

Γ ` e1 : int Γ ` e2 : int ⊕ ∈ {+, -, *, *>>, /, %}
Γ ` e1 ⊕ e2 : int

Γ ` e : int
Γ ` -e : int

Γ ` e1 : int Γ ` e2 : int 	 ∈ {==, !=, <, <=, >, >=}
Γ ` e1 	 e2 : bool

Γ ` e : bool
Γ ` !e : bool

Γ ` e1 : bool Γ ` e2 : bool 	 ∈ {==, !=, &, |}
Γ ` e1 	 e2 : bool

Γ ` e : τ[]

Γ ` length(e) : int
Γ ` e1 : τ[] Γ ` e2 : τ[] 	 ∈ {==, !=}

Γ ` e1 	 e2 : bool

Γ ` e1 : τ . . . Γ ` en : τ n ≥ 0
Γ ` {e1, . . . ,en} : τ[]

Γ ` e1 : τ[] Γ ` e2 : int
Γ ` e1[e2] : τ

Γ ` e1 : τ[] Γ ` e2 : τ[]

Γ ` e1 + e2 : τ[]

Γ(f) = fn unit→ T′ T′ , unit
Γ ` f() : T′

Γ(f) = fn τ → T′ T′ , unit Γ ` e : τ

Γ ` f(e) : T′

Γ(f) = fn (τ1, . . . , τn)→ T′ T′ , unit Γ ` ei : τi
(∀i∈1..n) n ≥ 2

Γ ` f(e1, . . . ,en) : T′

4 Type-checking statements

To type-check statements, we need all the information used to type-check expressions, plus the types of
procedures, which are included in Γ. In addition, we extend the domain of Γ a little to include a special
symbol ρ. To check the return statement we need to know what the return type of the current function is
or if it is a procedure. Let this be denoted by Γ(ρ) = ret T, where T , unit if the statement is part of a
function, or T = unit if the statement is part of a procedure. Since statements include declarations, they can
also produce new variable bindings, resulting in an updated typing context which we will denote as Γ′. To
update typing contexts, we write Γ[x 7→ var τ], which is an environment exactly like Γ except that it maps x
to var τ. We use the metavariable s to denote a statement, so the main typing judgment for statements has
the form Γ ` s : R, Γ′.

Most of the statements are fairly straightforward and do not change Γ:

Γ ` s1 : unit, Γ1 Γ1 ` s2 : unit, Γ2 . . . Γn−1 ` sn : R, Γn

Γ ` {s1 s2 . . . sn} : R, Γ
(SEQ)

Γ ` {} : unit, Γ
(EMPTY)

Γ ` e : bool Γ ` s : R, Γ′

Γ ` if (e) s : unit, Γ
(IF)

Γ ` e : bool Γ ` s1 : R1, Γ′ Γ ` s2 : R2, Γ′′

Γ ` if (e) s1 else s2 : lub(R1, R2), Γ
(IFELSE)

CS4120/4121/5120/5121 Spring 2020 2/5 Xi Type System Specification

Γ ` e : bool Γ ` s : R, Γ′

Γ ` while (e) s : unit, Γ
(WHILE)

Γ(f) = fn unit→ unit
Γ ` f() : unit, Γ

(PRCALLUNIT)
Γ(f) = fn τ → unit Γ ` e : τ

Γ ` f(e) : unit, Γ
(PRCALL)

Γ(f) = fn (τ1, . . . , τn)→ unit Γ ` ei : τi
(∀i∈1..n) n ≥ 2

Γ ` f(e1, . . . ,en) : unit, Γ
(PRCALLMULTI)

Γ(ρ) = ret unit
Γ ` return : void, Γ

(RETURN)
Γ(ρ) = ret τ Γ ` e : τ

Γ ` return e : void, Γ
(RETVAL)

Γ(ρ) = ret (τ1, τ2, . . . , τn) Γ ` ei : τi
(∀i∈1..n) n ≥ 2

Γ ` return e1, e2, . . . , en : void, Γ
(RETMULTI)

The function lub is defined as follows:

lub(R, R) = R lub(unit, R) = lub(R, unit) = unit

Therefore, the type of an if is void only if all branches have that type.
Assignments require checking the left-hand side to make sure it is assignable:

Γ(x) = var τ Γ ` e : τ

Γ ` x = e : unit, Γ
(ASSIGN)

Γ ` e1 : τ[] Γ ` e2 : int Γ ` e3 : τ

Γ ` e1[e2] = e3 : unit, Γ
(ARRASSIGN)

Declarations are the source of new bindings. Three kinds of declarations can appear in the source
language: variable declarations, multiple assignments, and function/procedure declarations. We are only
concerned with the first two kinds within a function body. To handle multiple assignments, we define a
declaration d that can appear within a multiple assignment:

d ::= x:τ | _
and define functions typeof (d) and varsof (d) as follows:

typeof (x:τ) = τ typeof (_) = unit
varsof (x:τ) = {x} varsof (_) = ∅

Using these notations, we have the following rules:

x < dom(Γ)
Γ ` x:τ : unit, Γ[x 7→ var τ]

(VARDECL)
x < dom(Γ) Γ ` e : τ

Γ ` x:τ = e : unit, Γ[x 7→ var τ]
(VARINIT)

Γ ` e : τ
Γ ` _ = e : unit, Γ

(EXPRSTMT)
x < dom(Γ) Γ ` ei : int (∀i∈1..n) n ≥ 1 m ≥ 0

Γ ` x:τ[e1] . . . [en] [] . . . []︸ ︷︷ ︸
m

: unit, Γ[x 7→ var τ [] . . . []︸ ︷︷ ︸
n+m

]
(ARRAYDECL)

Γ ` e : (τ1, . . . , τn) τi ≤ typeof (di)
(∀i∈1..n)

dom(Γ) ∩ varsof (di) = ∅ (∀i∈1..n) varsof (di) ∩ varsof (dj) = ∅ (∀i,j∈1..n.j,i)

Γ ` d1, . . . ,dn = e : unit, Γ[xi 7→ var typeof (di)
(∀i∈1..n∀xi .varsof (di)={xi})]

(MULTIASSIGN)

The final premise in rule MULTIASSIGN prevents shadowing by ensuring that dom(Γ) and all of the
varsof (di)’s are disjoint from each other. With respect to (ARRAYDECL), note that the case of declaring an
array with no dimension sizes specified (n = 0) is already covered by (VARDECL).

CS4120/4121/5120/5121 Spring 2020 3/5 Xi Type System Specification

5 Checking top-level declarations

At the top level of the program, we need to figure out the types of procedures and functions, and make
sure their bodies are well-typed. Since mutual recursion is supported, this needs to be done in two passes.
First, we use the judgment Γ ` fd : Γ′ to state that the function or procedure declaration fd extends top-level
bindings Γ to Γ′:

f < dom(Γ)
Γ ` f() s : Γ[f 7→ fn unit→ unit]

f < dom(Γ)
Γ ` f(x:τ) s : Γ[f 7→ fn τ → unit]

f < dom(Γ) Γ′ = Γ[f 7→ fn (τ1, . . . , τn)→ unit] n ≥ 2
Γ ` f(x1:τ1, . . . ,xn:τn) s : Γ′

f < dom(Γ)
Γ ` f():τ′ s : Γ[f 7→ fn unit→ τ′]

f < dom(Γ)
Γ ` f(x:τ):τ′ s : Γ[f 7→ fn τ → τ′]

f < dom(Γ) Γ′ = Γ[f 7→ fn (τ1, . . . , τn)→ τ′] n ≥ 2
Γ ` f(x1:τ1, . . . ,xn:τn):τ

′ s : Γ′

f < dom(Γ) Γ′ = Γ[f 7→ fn unit→ (τ′1, . . . , τ′m)] m ≥ 2

Γ ` f():τ′1, . . . ,τ′m s : Γ′

f < dom(Γ) Γ′ = Γ[f 7→ fn τ → (τ′1, . . . , τ′m)] m ≥ 2

Γ ` f(x:τ):τ′1, . . . ,τ′m s : Γ′

f < dom(Γ) Γ′ = Γ[f 7→ fn (τ1, . . . , τn)→ (τ′1, . . . , τ′m)] n ≥ 2 m ≥ 2

Γ ` f(x1:τ1, . . . ,xn:τn):τ
′
1, . . . ,τ′m s : Γ′

The second pass over the program is captured by the judgment Γ ` fd def, which defines how to check
well-formedness of each function definition against a top-level environment Γ, ensuring that parameters do
not shadow anything and that the body is well-typed. We treat procedures just like functions that return the
unit type. The body of a procedure definition may have any type, but the body of a function definition must
have type void, which ensures that the function body does not fall off the end without returning.

Γ[ρ 7→ ret unit] ` s : R, Γ′

Γ ` f() s def
x < dom(Γ) Γ[x 7→ var τ, ρ 7→ ret unit] ` s : R, Γ′

Γ ` f(x:τ) s def

|dom(Γ) ∪ {x1, . . . , xn}| = |dom(Γ)|+ n n ≥ 2

Γ[x1 7→ var τ1, . . . , xn 7→ var τn, ρ 7→ ret unit] ` s : R, Γ′

Γ ` f(x1:τ1, . . . ,xn:τn) s def

Γ[ρ 7→ ret τ′] ` s : void, Γ′

Γ ` f():τ′ s def
x < dom(Γ) Γ[x 7→ var τ, ρ 7→ ret τ′] ` s : void, Γ′

Γ ` f(x:τ):τ′ s def

CS4120/4121/5120/5121 Spring 2020 4/5 Xi Type System Specification

|dom(Γ) ∪ {x1, . . . , xn}| = |dom(Γ)|+ n n ≥ 2

Γ[x1 7→ var τ1, . . . , xn 7→ var τn, ρ 7→ ret τ′] ` s : void, Γ′

Γ ` f(x1:τ1, . . . ,xn:τn):τ
′ s def

Γ[ρ 7→ ret (τ′1, . . . , τ′m)] ` s : void, Γ′ m ≥ 2

Γ ` f():τ′1, . . . ,τ′m s def

x < dom(Γ) Γ[x 7→ var τ, ρ 7→ ret (τ′1, . . . , τ′m)] ` s : void, Γ′ m ≥ 2

Γ ` f(x:τ):τ′1, . . . ,τ′m s def

|dom(Γ) ∪ {x1, . . . , xn}| = |dom(Γ)|+ n n ≥ 2 m ≥ 2

Γ[x1 7→ var τ1, . . . , xn 7→ var τn, ρ 7→ ret (τ′1, . . . , τ′m)] ` s : void, Γ′

Γ ` f(x1:τ1, . . . ,xn:τn):τ
′
1, . . . ,τ′m s def

6 Checking a program

Using the previous judgments, we can define when an entire program fd1 fd2 . . . fdn that does not contain a
use declaration is well-formed, written ` fd1 fd2 . . . fdn prog:

∅ ` fd1 : Γ1 Γ1 ` fd2 : Γ2 . . . Γn−1 ` fdn : Γ Γ ` fdi def
(∀i∈1..n)

` fd1 fd2 . . . fdn prog

For brevity, the rules for adding declarations appearing in interfaces are omitted. These rules are slightly
different from those of the form Γ ` fd : Γ′ in Section 5, where f < dom(Γ) is replaced with appropriate
conditions. Once added, these declarations also permits declarations in the source file of identical signature.
See Section 8 of the Xi Language Specification.

CS4120/4121/5120/5121 Spring 2020 5/5 Xi Type System Specification

	Changes
	Types
	Subtyping
	Type-checking expressions
	Type-checking statements
	Checking top-level declarations
	Checking a program

