
CS4120/4121/5120/5121—Spring 2020
Homework 4

More types and program Analysis
Due: Monday, April 27, 11:59pm

0 Updates

• None yet; watch this space.

1 Instructions

1.1 Partners

You may work alone or with one partner on this assignment. But remember that the course staff is
happy to help with problems you run into. Use Piazza for questions, attend office hours, or set up
meetings with any course staff member for help.

1.2 Homework structure

All problems are required of all students.

1.3 Tips

You may find the Dot and Graphviz packages helpful for drawing graphs. You can get these
packages for multiple OSes from the Graphviz download page.

2 Problems

1. Preventing the billion-dollar mistake through types
Accesses to null pointers are a frequent source of bugs and security vulnerabilities. To protect

against these accesses, one option is to rely on hardware memory protection to prevent these
accesses, but that protection is not always available on embedded platforms, and in any case
programs crash when they attempt to dereference null. Tony Hoare called the addition of a null
value to the Algol language his “billion-dollar mistake”, for the damage it has caused.

An excellent alternative to null values is to have a “maybe” or “option” type constructor in
the language, as in OCaml, Haskell, and Kotlin. The type maybe t, where t is some type, either
represents a value of type t or the absence of any value. Maybe types, which date back to the
programming language CLU, are a more principled way of handling the absence of a value,
because the type system itself helps the programmer remember to test whether a value is present.
There are many presentations of the idea of maybe types; let’s figure out typing rules for one of
them. The following terms should be supported by the language:

CS4120/4121/5120/5121 Spring 2020 1/5 Homework 4

http://www.graphviz.org/Download..php


• none should have the type maybe t for any type t.
• Any expression of type t should be usable as an expression of type maybe t.
• (OCaml-like) The expression match e with some x→ e1 | none→ e2 evaluates e to a value

of type maybe t and, if the value is not none, evaluates e1 with variable x bound to the value of
type t. Otherwise, it evaluates e2. The result of the match expression is the value of whichever
of e1 or e2 is evaluated.
• (Kotlin-like) A function call e1(e2) is permitted where e2 evaluates to a maybe t, but e1

evaluates to a function expecting a t and returning a t′. If the argument is none, the function is
not called, and the result of the expression is none. Otherwise the result of the expression is
the result of the function, viewed as a maybe.

Write typing rules that describe formally how to type-check these expressions. Also give a
safe but permissive subtyping rule for relating two maybe types.

2. Preventing the billion-dollar mistake through program analysis
Accesses to null pointers are a frequent source of bugs and security vulnerabilities. To protect

against these accesses, one option is to rely on hardware memory protection to prevent these
accesses, but that protection is probably not available on embedded platforms. In this problem,
you will design a dataflow analysis that ensures memory accesses do not go to memory address
zero, by conservatively computing the set of variables at each program point that may contain
zero. Accesses to memory location [x], where x is a variable, can then be prevented at a program
point where x might be zero.

(a) What is the top element > for this dataflow analysis?

(b) Define the ordering and the meet operator for elements in this lattice (including >).

(c) Give dataflow equations for this analysis for each of the possible kinds of IR nodes. Recall
that we had five IR node types: x = e, [e1] = e2, if e, start, return e. For simplicity,
we will use a simpler syntax in which expressions can only occur as right-hand side of an
assignment to a variable: x = e, [x1] = x2, if x, start, return x where e can only
take the forms n (constant), x, x1 + x2, and [x].

Also, note that this is an analysis where, as with conditional constant propagation, it is
sometimes helpful to propagate different information along different exiting edges from an
if node.

CS4120/4121/5120/5121 Spring 2020 2/5 Homework 4



3. Defending against zombies with dataflow analysis
Let us define “undead” code as code that depends on a variable that is always uninitialized.
When such undead code is removed, additional program regions may become undead due to the
disappearance of variable declarations. The goal of this exercise is to remove all undead code
from a function using only a single analysis pass. No variables will be assumed to be live-in at
the start of the CFG.

(a) Design a dataflow analysis that can be used for cascading undead-code removal. Describe its
ordering, the meet operator, the top element, as well as the flow function. Where necessary,
be conservative. You only need to specify the flow function for assignments x = expr.

(b) Show that the flow functions you defined are monotonic, and either show that they are
distributive or construct a counterexample.

(c) Show that one run of your analysis leads to the removal of the following grayed-out undead
code (remember that meets are used at merge points in the CFG):

1 a = 1

2 if (f(a) > 0) {
3 c = c+1

4 d = 5

5 }

6 [d] = a+c

7 g = a+d

CS4120/4121/5120/5121 Spring 2020 3/5 Homework 4



4. Control-flow analysis
For the control-flow graph in Figure 1, give the dominator tree, with back edges added as dashed
edges. Identify the loops and the control tree, and for each loop indicate its set of nodes, its
header node, and its exit edges.

G

A B J

F

I H

L C K

ED

Figure 1: The control-flow graph for Problem 4

CS4120/4121/5120/5121 Spring 2020 4/5 Homework 4



5. Single Static Assignment
Consider the following control-flow graph:

x = ...
y = ...
z = ...

if x > y

z = y

x = x + 1

y = y/2

x = y + z

Convert to SSA using the least number of ϕ functions possible and draw the result.

3 Submission

Submit your solution as a PDF file on CMS. This file should contain your name, your NetID, all
known issues you have with your solution, and the names of anyone with whom you have discussed
the homework.

CS4120/4121/5120/5121 Spring 2020 5/5 Homework 4


	Updates
	Instructions
	Partners
	Homework structure
	Tips

	Problems
	Submission

