
CS4120/4121/5120/5121—Spring 2019
Xi++ Language Specification

Cornell University
Version of May 5, 2019

Thanks to the hard work and brilliant engineering of your team, Xi has been gaining market share. In
response to customer demands for object-oriented features, a new object-oriented version of the language,
called Xi++, has been been partly designed. Your task is to extend your Xi implementation with the new
object-oriented features, and to add some language extension of your own design.

Xi++ is backward compatible with Xi, so this language description focuses on the differences. The original
Xi spec is still available.

0 Changes

• No changes yet.

1 Class definitions

An Xi++ program may contain class definitions in addition to function definitions. A class definition may
contain instance variable (field) definitions, and method definitions. For example, the following code defines
a Point class and an associated creator function createPoint:

1 class Point { // a mutable point
2 x,y: int

3

4 move(dx: int, dy: int) {

5 x = x + dx

6 y = y + dy

7 }

8 coords() : int, int {

9 return x, y
10 }

11 add(p: Point) : Point {

12 return createPoint(x + p.x, y + p.y)
13 }

14 initPoint(x0: int, y0: int): Point {

15 x = x0

16 y = y0

17 return this
18 }

19 clone(): Point { return createPoint(x, y) }
20 equals(p: Point): bool { return this == p }
21 }

22

23 createPoint(x: int, y: int): Point {

24 return new Point.initPoint(x, y)
25 }

As in Java, there is a special variable this that refers to the method receiver. The instance variables and
methods of this are automatically in scope within methods. Where visible, instance variables can also be
accessed with the usual dot notation, e.g. p.x at line 12.

Notice that the fields x and y can both be declared at once to have the type int. The same abbreviated
syntax can now be used for local variable declarations, though no initializer expression may be provided in
that case.

CS4120/4121/5120/5121 Spring 2019 1/6 Xi++ Language Specification

http://www.cs.cornell.edu/courses/cs4120/2019sp/project/language.pdf
http://www.cs.cornell.edu/courses/cs4120/2019sp/project/language.pdf

2 Class declarations

Classes do not have visibility modifiers. All class members, including instance variables, are visible every-
where inside their module (i.e., source file). To be used from a different module, the class must be declared in
an interface that includes all the methods of the class that are not already declared by a superclass.1 Instance
variables are only visible within the module that defines them and cannot be mentioned in interfaces. For
example, we might define an interface file for the Point class, hiding the x and y fields:

1 // A 2D Point with integer coordinates (x,y).

2 class Point {
3 move(dx: int, dy: int)

4 add(p: Point): Point

5 coords(): int, int

6 clone(): Point

7

8 // Initialize this to contain (x,y).

9 // Returns: this

10 initPoint(x: int, y: int): Point

11 }

12

13 // Create the point (x,y).

14 createPoint(x: int, y: int): Point

A class may inherit from one other class, with an extends clause. For example, we might declare a
subclass ColoredPoint that inherits from Point:

1 class Color {
2 r,g,b: int

3 }

4

5 class ColoredPoint extends Point {
6 col: Color

7 color(): Color { return col }
8

9 initColoredPoint(x0: int, y0: int, c: Color): ColoredPoint {

10 col = c

11 _ = initPoint(x0, y0)

12 return this
13 }

14 }

There are no class variables or class methods (Java’s static) in Xi++, because ordinary functions as in Xi,
and the newly introduced global variables, can be used instead.

3 Modules and interfaces

The extension .xi continues to be used for files containing module definitions and the extension .ixi is
used for interface files. Therefore, the statement use my_module appearing in a module causes the compiler
to look for the interface in the file my_module.ixi.

The syntax of interfaces has also been extended so that, like modules, they can begin with “use” state-
ments. If a module uses an interface, it also implicitly uses every interface that is used by that interface. It is
legal for an interface to be used by a module along multiple “use” paths.

1 The lack of private methods makes it possible to lay out dispatch vectors at compile time.

CS4120/4121/5120/5121 Spring 2019 2/6 Xi++ Language Specification

If a module is defined in a file a_module.xi, the compiler automatically looks for an interface in file
a_module.ixi, exactly as though the module had contained a statement use a_module.ixi. However, such
an interface need not exist.

If a module that defines a class C references (either explicitly or implicitly) an interface that declares class
C, the class definition must match the interface declaration. It must implement all of the methods that the
interface declares, and no additional methods. If such an interface exists, the order of the methods (in the
object’s dispatch vector) is as declared in the interface, not as defined in the module. Similarly, if a module
references an interface that declares a procedure or function that is defined in the module, the signature of
the procedure or function declared in the interface must match the definition in the module.

A module does not need to have an interface. Further, even if there is an interface, not every class,
procedure, or function in the module needs to be declared in that interface. Undeclared components are
analogous to private classes or private methods in Java because they are not visible outside their own
module.

Globals, including classes and functions, are in scope throughout their defining module and throughout
any module that uses an interface that declares them.

4 Subtyping and conformance

The subtyping relationship of Xi is extended to classes in a straightforward way. Every class name can
be used as a type. A class is a subtype of the class it extends, if any. It is therefore also a subtype of any
supertypes of that class. There is no top class in the subtype ordering (no Object).

Classes must conform to their declared superclasses. They may override and redeclare methods from the
superclass, but if they do, the new method signature must match the signature in the superclass. They may
not declare methods whose names shadow those in superclasses.

The subtyping rule on arrays is unchanged—if classes B and C extend class A, you cannot use a value of
type B[] at type A[], since then you could put a C into it and cause a run-time type error.

5 New operators

A new object is created with the syntax new C. This can only be done inside the module where C is defined—
standalone creator operations must be implemented as functions like createPoint above. As the Point
example shows, this operator has higher precedence than “.” does. Fields of an object created by new are not
initialized.

Inside the definition of the class C, the equality comparison == and the inequality comparison != can
be used on a value of type C. These serve as pointer comparisons, much like in Java, though ones that are
private to C. Such comparisons are legal as long as one of two operands is of type C. It is a static error to
compare an object with an array or anything else that does not have an object type.

Inside the definition of the class C—and only inside a class definition—the special expression null can
be used as a value of type C. It is implemented as memory address zero, so any attempt to access its fields
or methods should cause the program to crash immediately. It is in the language primarily to support
interoperability with libraries from other languages, such as the QtXi library.

6 Non-OO extensions

6.1 Global variables

The lack of global variables in Xi has been remedied in Xi++. A module can contain global variable
declarations, such as:

1 center: Point

2 corner: Point

CS4120/4121/5120/5121 Spring 2019 3/6 Xi++ Language Specification

3 len: int = 10

4 tenpoints: Point[len]

Global variables may be left uninitialized or initialized with an arbitrary expression of the right type.
Within one module, global variable initializers are run in the order that they appear. The relative order of
evaluation of global initializers from different modules is unspecified.

Global variables cannot be declared in interfaces, so they are private to a given module. Two different
global variables in different modules are different global variables even if they happen to be declared with
the same name.

6.2 Assignment

To make type-checking convenient, we introduce a new judgment Γ ` e : τ lvalue, which means that e is an
expression that can be assigned values of type τ (an lvalue). With this rule, we can rewrite the (ASSIGN) rule
in a more generic form that encompasses the old rule and also the old (ARRASSIGN) rule:

Γ ` e1 : τ lvalue Γ ` e2 : τ

Γ ` e1 = e2 : Γ
(ASSIGN)

The lvalues are variables, array elements, and fields:

Γ(x) = var τ

Γ ` x : τ lvalue
(VARLVALUE)

Γ ` e1 : τ[] Γ ` e2 : int
Γ ` e1[e2] : τ lvalue

(ARRLVALUE)

Γ ` e1 : C class C { . . . f:τ . . . } ∈ Γ
Γ ` e1. f : τ lvalue

(FIELDLVALUE)

6.3 Break statement

To make it easier to end loops, a break statement similar to that in C and Java has been added. As in these
languages, its effect is to immediately terminate the closest lexically enclosing loop. As with the return
statement, its type is void, but the break statement is legal only if lexically enclosed by a loop. This rule
could be modeled in the type system by adding a binding β : unit to the context of while loop bodies.

7 ABI

To give implementers flexibility, the ABI for Xi++ specifies as little as is required for different implementations
to interoperate, with implementations otherwise free to lay out data as desired.

7.1 Method calls

The first common need is dynamic dispatch of method calls. For this, objects must specify pointers to their
classes’ dispatch tables at their first memory location, with the tables laid out as follows:

Starting with the class at the top of the inheritance hierarchy, and moving down towards the most
concrete class, first allocate a private slot for the use of whatever compiler built that class, then a pointer for
each method in the order they are specified in the interface declaration. For example, in the ColoredPoint
example above, the layout must look like this:

CS4120/4121/5120/5121 Spring 2019 4/6 Xi++ Language Specification

a ColoredPoint object

0-7 Dispatch table pointer

8-? Point data

?-? ColoredPoint data

ColoredPoint dispatch table

0-7 Point implementation-specific

8-15 move(dx:int, dy:int)

16-23 coords() : int, int

24-31 add(p:Point) : Point

32-39 initPoint() : Point

40-47 clone() : Point

48-55 equals(p: Point) : bool

56-63 ColoredPoint implementation-specific

64-71 color() : Color

72-79 initColoredPoint() : ColoredPoint

When a method is invoked, the reference to the receiver object is passed as if it was the first argument,
before the actual arguments, but after any hidden argument used to return multiple results. Object references
are stored in arrays and are passed to and returned from functions in the same way as other scalar types like
int and bool. Top-level functions that take or return object reference should encode their types into method
signatures as follows:

1. o
2. A number giving the length of the unescaped type name.
3. The name, with underscores escaped in the usual fashion.

For example, the method average(a: Point, b: Point): Pointwould have its name encoded as
_Iaverage_o5Pointo5Pointo5Point. The naming of symbols for methods is implementation-specific since
they cannot be called from a different compilation unit by name, only via dispatch vectors.

7.2 Fields

Fields of objects are laid out in the order they are declared, with each field taking up one 64-bit word.

7.3 Global variables

The symbol names for global variables should be encoded as follows:

1. _I_g_
2. The name of the variable, with underscores escaped.
3. _
4. Encoding of the variable’s type.

For example, a variable points of type QPoint[]will be encoded as _I_g_points_ao6QPoint.

7.4 Initialization

Notice that in order to allocate objects of type ColoredPoint, the size of objects of type Point must be
known, but it may not be available during ColoredPoint’s compilation. Similarly, if ColoredPoint does not
override some methods from Point, it needs to copy pointers to them from Point’s dispatch vector into its
own.

CS4120/4121/5120/5121 Spring 2019 5/6 Xi++ Language Specification

Because of this, object sizes and dispatch vectors are to be computed at application startup time. The
size of an object of type someClass, including areas for superclasses and the dispatch vector pointer,
should be stored in the _I_size_someClass variable, while its dispatch vector should be stored under
the _I_vt_someClass symbol, with underscores in the class name escaped under usual rules.

The size variables are initially set to 02 to denote that the size information and the dispatch vector for
the given class have not yet been computed. In that case, the function _I_init_someClass() is expected to
fully compute the size and dispatch vector information. When initializing its own dispatch vector, a subclass
must copy pointers for all the methods it does not override, as well as all of its superclass’ private class
information pointers into the appropriate slots in its dispatch vector. An implementation is expected to
avoid computing object sizes and dispatch vector more than once.

You may arrange for initialization functions to be called at startup by placing their addresses into the
.ctors section of the object file; see examples/init.s in the runtime distribution for an example. The order
of invocation of these initializers is not specified, however; and therefore any superclasses must have their
initialization functions called recursively if necessary.

2An implementation may set them to the correct value if it is able to compute both the size and the dispatch vector fully at compile
time.

CS4120/4121/5120/5121 Spring 2019 6/6 Xi++ Language Specification

	Changes
	Class definitions
	Class declarations
	Modules and interfaces
	Subtyping and conformance
	New operators
	Non-OO extensions
	Global variables
	Assignment
	Break statement

	ABI
	Method calls
	Fields
	Global variables
	Initialization

