
10/28/2013

1

CS 4120

Introduction to Compilers

Ross Tate

Cornell University

Lecture 26: Live-Variable Analysis

2 CS 4120 Introduction to Compilers

Problem

• Abstract assembly contains arbitrarily

many registers ti
• Want to replace all such nodes with

register nodes for e[a-d]x, e[sd]i, (ebp)

• Local variables allocated to TEMP’s too

• Only 6-7 usable registers: need to allocate

multiple ti to each register

• For each statement, need to know which

variables are live to reuse registers

3 CS 4120 Introduction to Compilers

Using scope

• Observation: temporaries, variables have

bounded scope in program

• Simple idea: use information about program

scope to decide which variables are live

• Problem: overestimates liveness

b is live

c is live, b is not

what is live here?

{ int b = a + 2;

 int c = b*b;

 int d = c + 1;

 return d; }

4 CS 4120 Introduction to Compilers

Live-variable analysis

• Goal: for each statement, identify

which temporaries are live

• Analysis will be conservative (may

over-estimate liveness, will never

under-estimate)

• But more precise than simple scope

analysis (will estimate fewer live

temporaries)

5 CS 4120 Introduction to Compilers

Control-Flow Graph

• Canonical IR forms control-flow graph (CFG)

– statements are nodes; jumps/fall-throughs are

edges

MOVE

CJUMP

MOVE

RETURN

fall-through edges

out-edges

in-edges

6 CS 4120 Introduction to Compilers

Liveness

• Liveness is associated with edges of

control flow graph, not nodes (statements)

• Same register can be used for different

temporaries manipulated by one statement

live: a, c, e

live: b, c

10/28/2013

2

7 CS 4120 Introduction to Compilers

Example
a = b + 1

MOVE(TEMP(ta), TEMP(tb) + 1)

mov ta, tb

add ta, 1
Register allocation: ta ⇒ eax, tb ⇒ eax

mov eax, eax

add eax, 1

Live: tb
mov ta, tb

add ta,1

Live: ta

8 CS 4120 Introduction to Compilers

Use/Def

• Every statement uses some set of

variables (reads from them) and defines

some set of variables (writes to them)

• For statement s define:

• use[s] : set of variables used by s

• def [s] : set of variables defined by s

• Example:

– a = b + c use = b,c def = a

– a = a + 1 use = a def = a

9 CS 4120 Introduction to Compilers

Liveness

• Variable v is live on edge e if there is

• a node n in the CFG that uses it and

• a directed path from e to n passing

through no def

• How to compute efficiently?

• How to use?

10 CS 4120 Introduction to Compilers

Simple algorithm: Backtracing

• “variable v is live on edge e if there is a node n

in the CFG that uses it and a directed path from

e to n passing through no def ”

• (Slow) algorithm: Try all paths “from” each use

of a variable, tracing backward in the CFG until

a def node or previously visited node is

reached. Mark variable live on each edge

traversed.

11 CS 4120 Introduction to Compilers

Dataflow Analysis

• Idea: compute liveness for all variables

simultaneously

• Approach: define formulae that must be

satisfied by any liveness determination

• Solve formulae by iteratively converging

on solution

• Instance of general technique for

computing program properties: data-flow

analysis

12 CS 4120 Introduction to Compilers

Data-flow values

use[n] : set of variables used by n

def [n] : set of variables defined by n

in[n] : variables live on entry to n

out[n] : variables live on exit from n

Clearly: in[n] ⊇ use[n]

What other constraints are there?

10/28/2013

3

13 CS 4120 Introduction to Compilers

Data-flow constraints

• in[n] ⊇ use[n]

• A variable must be live on entry to n if it is

used by the statement itself

• in[n] ⊇ out[n] \ def [n]

• If a variable is live on output and the

statement does not define it, it must be live

on input too

• out[n] ⊇ in[n’] if n’ ∈ succ [n]

• if live on input to n’, must be live on output

from n

14 CS 4120 Introduction to Compilers

Iterative data-flow analysis

• Initial assignment to in[n], out[n] is empty set Ø
– will not satisfy constraints

in[n] ⊇ use[n]

in[n] ⊇ out[n] \ def [n]

out[n] ⊇ in[n’] if n’ ∈ succ [n]

• Idea: iteratively recompute in[n], out[n] when forced

to by constraints. Live-variable sets will increase

monotonically.

• Dataflow equations:

in’ [n] = use[n] ⋃ (out[n] \ def [n])

out’ [n] = ⋃n’ ∈ succ[n] in[n’]

15 CS 4120 Introduction to Compilers

Complete algorithm

for all n, in[n] = out[n] = Ø

repeat until no change

 for all n

 out[n] = ⋃n’ ∈ succ[n] in[n’]

 in[n] = use[n] ⋃ (out[n] \ def[n])

 end

end

• Finds fixed point of in/out equations

• Problem: does extra work recomputing in/out
values when no change can happen

16 CS 4120 Introduction to Compilers

Example

e=1

if x>0

z=e*e

y=e*x

e=z

if x&1

e=y

return x

def: e

use: x

use: x
use: e

def: z

use: e, x
def: y

use: z
def: e

use: x

use: y
def: e

1

2

3 4

5

6

7
8

2: in={x}

3: in={e}

4: in={x}

5: in={e,x}

6: in={x}

7: out={x}, in={x,z}

8: out={x}, in={x,y}

1: out={x}, in={x}

2: out={e,x}, in={e,x}

3: out={e,x}, in={e,x}

5: out={x}, in={e,x}

6: out={x,y,z}, in={x,y,z}

7: out={e,x}, in={x,z}

8: out={e,x}, in={x,y}

1: out={e,x}, in={x}

5: out={x,y,z}, in={e,x,z}

3: out={e,x,z}, in={e,x}

all equations satisfied

17 CS 4120 Introduction to Compilers

Faster algorithm

• Information only propagates
between nodes because of this
equation:

out[n] = ⋃n’ ∈ succ [n] in[n’]

• Node is updated from its successors

• If successors haven’t changed, no

need to apply equation for node

• Should start with nodes at “end” and

work backward
18 CS 4120 Introduction to Compilers

Worklist algorithm

• Idea: keep track of nodes that might need to

be updated in worklist : FIFO queue
 for all n, in[n] = out[n] = Ø

 w = { set of all nodes }

 repeat until w empty

 n = w.pop()

 out[n] = ⋃n’ ∈ succ [n] in[n’]

 in[n] = use[n]  (out[n] \ def [n])
 if change to in[n]

 for all predecessors m of n, w.add(m)

 end

