
10/16/2013

1

CS 4120

Introduction to Compilers

Ross Tate

Cornell University

Lecture 20: Object layout and method dispatch

2

Class Components
• fields/instance variables

– values may differ from object to object

– usually mutable

• methods
– values shared by all objects of a class

– usually immutable

– usually functions with implicit argument
• object itself (this/self)

• all components have visibility
– e.g. public, private, protected

3

Code generation for objects

• Methods

– Generating method body

– Generating method calls (dispatching)

• Fields

– Memory layout

• Packing and alignment

– Generating accessor code

4

Compiling methods
• Methods look like functions, are type-

checked like functions…what is different?

• Argument list: implicit receiver argument

• Calling sequence: use dispatch vector
instead of jumping to absolute address

5

norm

code

The need for dispatching
• Problem: compiler can’t tell what code to

run when method is called

abstract class Point { int getx(); float norm(); }

class CartesianPoint implements Point { …

float norm() { return sqrt(x*x+y*y); }

class RadialPoint implements Point { …

float norm() { return r; }

float dist(Point pt) { return pt.norm(); }

• Solution: dispatch
table (dispatch

vector, selector table…)

vtable
norm

getx

6

Method dispatch

• Idea: every method has its own small
integer index

• Index is used to look up method in
dispatch vector

abstract class A {

void foo(); 0

}

abstract class B extends A {

void bar(); 1

void baz(); 2

}

class C implements B {

void foo() {…}

void bar() {…}

void baz() {…}

void quux() {…} 3

}

10/16/2013

2

7

V-Table layouts

foo

A

foo

B bar

baz

foo

C bar

baz

quux
8

Method arguments
• Methods have a special variable (in Java, “this”) called

the receiver object or context object

• Historically (Smalltalk): method calls thought of as
messages sent to receivers

• Receiver object is (implicit) argument to method

class Shape {

int setCorner(int which, Point p) { … }

}

int setCorner(Shape this, int which, Point p) { … }

compiled like

9

Calling sequence

Function Method
e.baz(…)

CALL

MEM

+

(baz’s index) *4

foo

bar

baz

quux

f(...)

ESEQ

E[[e]]

MOVE

to

to

to
…

CALL

NAME(f) …

MEM

10

Example

b.bar(3);

push 3

push eax

mov ebx, [eax]

mov ecx, [ebx + 4] (bar’s index = 1)
call ecx

A foo

B bar, baz

C quux

bar
bar

code

eax ebx ecx

11

Inheritance
Three traditional components of object-
oriented languages

– abstraction/encapsulation/information
hiding

– subtyping/interface inheritance -- interfaces
inherit method signatures from supertypes

– inheritance/implementation inheritance -- a
class inherits signatures and code from a
superclass (possibly “abstract”)

12

Inheritance
• Method code copied down from

superclass if not overridden by subclass

• Fields also inherited (needed by inherited
code in general)

10/16/2013

3

13

Object Layout

class Shape {

Point LL, UR;

void setCorner(int which, Point p);

}

class ColoredRect extends Shape {

Color c;

void setColor(Color c_);

}

LL: Point

UR: Point

DV setCorner

LL: Point

UR: Point

DV setCorner

c: Color

setColor

Shape ColoredRect

14

Code Sharing

LL: Point

UR: Point

DV setCorner

LL: Point

UR: Point

DV setCorner

c: Color

setColor

Machine code for

Shape.setCorner

• Don’t actually
have to copy code!

• Works with separate
compilation: can
inherit without
superclass source

15

Interfaces, abstract classes
• Classes define a type and some values

(methods)

• Interfaces are pure object types : no
implementation
– no V-Table: only an IM-Table layout

• Abstract classes are halfway:
– define some methods

– leave others unimplemented

– no objects (instances) of abstract class

• V-Table only for (abstract) classes

16

Static methods
• In Java, can declare methods static -- they

have no receiver object

• Called exactly like normal functions

– don’t need to enter into dispatch vector

– don’t need implicit extra argument for

receiver

• Treated as methods as way of getting
functions inside the class scope (access to
module internals for semantic analysis)

• Not really methods

17

Constructors
• Java, C++: classes can declare object

constructors that create new objects:

class C { public C(x, y, z) { initialize C } …}

• Scala, CubeX: one constructor
class C(x,y,z) { initialize C in body }

Compiling constructors
• Compiled just like static methods except:

– pseudo-variable “this” is in scope as in methods
– this is initialized with newly allocated memory
– first word in memory initialized to point to v-table
– value of this is return value of code

• For CubeX
– Where “new C” is called

• allocate memory for C instance
• set first word of instance to point to C’s v-table
• call C’s constructor passing the pointer

– Inside C’s constructor
• initialize fields of C using initialization statements
• use super’s constructor to initialize super’s fields

18

