10/15/2013

ﬁﬁf ‘

CS 4120
Introduction to Compilers

Ross Tate
Cornell University

Lecture 18: Instruction Selection

Where we are
Intermediate code

syntax-directed translation
reordering with traces
‘ Canonical intermediate code ‘

tiling
dynamic programming

Abstract assembly code

register allocation
Assembly code

CS 4120 Introduction to Compilers 2

Abstract Assembly

« Abstract assembly

= assembly code w/ infinite register set
+ Canonical intermediate code

= abstract assembly code + expression trees
MOVE(e,, e,) = mov el, e2
JUMP(e) = jmp e
CJUMP(e,l) > cmp el, e2

[jneljeljgt]..] 1

CALL(e, e,,...) = push el;...;call e
LABEL(l) > 1:

CS 4120 Introduction to Compilers

Instruction selection

+ Conversion to abstract assembly is

problem of instruction selection for a

single IR statement node

Full abstract assembly code: glue

translated instructions from each of the

statements

* Problem: more than one way to translate
a given statement. How to choose?

€S 4120 Introduction to Compilers 4

Example

MOVE mov %$rbp,t2
o~ \ add $4,t2
TEMP(t1) ADD mov (t2),t3

P ? add t3, t1
TEMP(t1) MEM
\
ADD

o~ add 4 (%rbp) ,tl
TEMP(fp) 4

CS 4120 Introduction to Compilers

X86-64 ISA

» Need to map IR tree to actual machine instructions — need to
know how instructions work
» A two-address CISC architecture (inherited from 4004, 8008,
8086...)
+ Typical instruction has
— opcode (mov, add , sub, shl, shr, mul, div, jmp, jcc,
push, pop, test, enter, leave)
— destination (r,n, (r) ,k(xr), (rl,r2),
(rl,r2,w) k(rl,r2,w))
(may also be an operand)
— source (any legal destination, or a constant $k)

opcode src src/dest
mov $1,%rax add %r/cx,%r/bz
sub %rbp,%esi add %edi, (%rcx,%edi,16)
je labell jmp 4 (%rbp)

CS 4120 Introduction to Compilers 6

10/15/2013

AT&T vs Intel

* Intel syntax:

» opcode dest, src

* Registers rax, rbx, rcx,...r8,r9,...r15

« constants k

* memory operands [n], [r+k], [r1+w*r2], ...
* AT&T syntax (GNU assembler default):

Tiling
* ldea: each Pentium instruction performs
computation for a piece of the IR tree: a tile
mov %$rbp,t2
add $4, t2
o~ mov (t2) ,t3
TEMP(t1) ADD 3 add t3, tl

MOVE

- opcode src, dest ST ,
opcoae src, des TEMP(t1) MEM « Tiles connected by new
« %rax, %rbx,... == temporary registers (t2,
+ constants $k ! t3) that hold result of
* memory operands n, k(r), (r1,r2,w), ... @ 4 tile
CS 4120 Introduction to Compilers 7 CS 4120 Introduction to Compilers 8
Tiles Some tiles
t2 mov t,,tl
e mov t1, t2 t
N add $1, t2 t
mov t,,t,
: S : D add t,,t
« Tiles capture compiler’s understanding of 27 %t
instruction set &, t,

« Each tile: sequence of instructions that
update a fresh temporary (may need extra
mov’s) and associated IR tree

« All outgoing edges are temporaries

CS 4120 Introduction to Compilers 9

MOVE
MEM }ONST(i) mov $i, (t;,t;)
ADD

t; t,

CS 4120 Introduction to Compilers 10

Designing tiles

» Only add tiles that are useful to compiler

* Many instructions will be too hard to use
effectively or will offer no advantage

» Need tiles for all single-node trees to guarantee
that every tree can be tiled, e.g.

mov tl, t2
add t1, t3 @
t t3

CS 4120 Introduction to Compilers 1

More handy tiles

lea instruction computes a memory address but doesn’t
actually load from memory

&y
lea (t;,t;), t;
5\ t
t

(k, one of

s lea (t;,t;,k;), t¢ 2,4,8,16)
2}
CS 4120 Introduction to Compilers 12

10/15/2013

Matching CJUMP for RISC
« As defined in lecture, have
CJUMP(cond, destination)
» Appel: CJUMP(op, e1, e2, destination)
where op is one of ==, I=, <, <=, =>, >
» Our CJUMP translates easily to RISC ISAs
that have explicit comparison result

MIPS
t cmplt t2, t3, t1

A br tl, n
¢ 3

CS 4120 Introduction to Compilers 13

Condition code ISA

» Appel’'s CJUMP corresponds more directly

to Pentium conditional jumps »
set condition codes

cmp t1, t2 e
jl n.

t1 t2 .
test condition codes

» However, can handle Pentium-style jumps
with lecture IR with appropriate tiles

CS 4120 Introduction to Compilers 14

Branches

» How to tile a conditional jump?
» Fold comparison operator into tile

An annoying instruction

» Pentium mul instruction multiples single
operand by eax, puts result in eax (low 32
bits), edx (high 32 bits)

» Solution: add extra mov instructions, let

test t . .) .
J:: e register allocation deal with edx overwrite
t t
mov tl, %eax
cmp t;, t; mul t2
je 11 t t, mov %eax, t.
t L
CS 4120 Introduction to Compilers 15 CS 4120 Introduction to Compilers 16
Tiling Problem Example
» How to pick tiles that cover IR statement tree with
minimum execution time? X=x+1;

* Need a good selection of tiles
» small tiles to make sure we can tile every tree
« large tiles for efficiency
« Usually want to pick large tiles: fewer instructions
« instructions # cycles: RISC core instructions take
1 cycle, other instructions may take more

add %rax,4 (%rcx) < mov 4 (%rcx) ,%$rdx
add %rdx,%rax
mov %rax,4 (%rcx)

CS 4120 Introduction to Compilers 17

ebp: Pentium frame-pointer register

mov (%ebp,x), tl

t2
t1
mov tl, t2
add $1, t2
mov t2, (%ebp,x)

CS 4120 Introduction to Compilers 18

10/15/2013

Alternate (non-RISC) tiling

X=x+1;

add $1, (ebp,x)

MOVE
/s
rimsz / \CONSTk
F\/m32 (k)

CS 4120 Introduction to Compilers 19

Greedy tiling

» Assume larger tiles = better

» Greedy algorithm: start from top of tree and
use largest tile that matches tree
« Tile remaining subtrees recursively
MOVE

MEM/ \4

AR
MEM T MUL_
ADD 4

ADD
7 8 Fon

CS 4120 Introduction to Compilers 20

MEM

Improving instruction selection

Greedy tiling may not generate best code

» Always selects largest tile, not necessarily
fastest instruction

» May pull nodes up into tiles when better to
leave below

Can do better using dynamic programming
algorithm

CS 4120 Introduction to Compilers 21

Timing model

« Idea: associate cost with each tile (proportional to # cycles
to execute)
« caveat: cost is fictional on modern architectures
< Estimate of total execution time is sum of costs of all tiles

2
Total cost: 5
2

CS 4120 Introduction to Compilers 2

Finding optimum tiling

« Goal: find minimum total cost tiling of tree

« Algorithm: for every node, find minimum
total-cost tiling of that node and sub-tree.

« Lemma: once minimum-cost tiling of all
children of a node is known, can find
minimum-cost tiling of the node by trying out
all possible tiles matching the node

+ Therefore: start from leaves, work
upward to top node

CS 4120 Introduction to Compilers 2

Recursive implementation

* Any dynamic-programming algorithm
equivalent to a memoized version of
same algorithm that runs top-down

+ For each node, record best tile for node

« Start at top, recurse:
« First, check in table for best tile for this node

« If not computed, try each matching tile to see which one has
lowest cost

« Store lowest-cost tile in table and return
+ Finally, use entries in table to emit code

CS 4120 Introduction to Compilers 24

10/15/2013

Problems with model

* Modern processors:
« execution time not sum of tile times
* instruction order matters
« Processors are pipelining instructions and executing
different pieces of instructions in parallel
+ bad ordering (e.g. too many memory operations in
sequence) stalls processor pipeline
 processor can execute some instructions in parallel
(super-scalar)
+ costis merely an approximation

« instruction scheduling needed

CS 4120 Introduction to Compilers 25

Finding matching tiles

+ Explicitly building every tile: tedious

+ Easier to write subroutines for matching
Pentium source, destination operands

» Reuse matcher for all opcodes

CS 4120 Introduction to Compilers 26

Matching tiles

abstract class IR_Stmt {
Assembly munch();

class IR_Move extends IR_Stmt {
IR_Expr src, dst;
Assembly munch() {
if (src instanceof IR_Plus &&

Tile Specifications

» Previous approach simple, efficient, but
hard-codes tiles and their priorities

» Another option: explicitly create data
structures representing each tile in
instruction set

MOVE IR_Plus)src).lhs.equals(dst) && . . .
~, §S(Jggme),n3z)(dst) {q () « Tiling performed by a generic tree-matching
/ / \ Assembly e = (IS_PIUSE‘rjz)l.th.munch(); and code generation procedure
T bet dins(dst, + Can generate from instruction set description
r/m32 ‘ — generic back end!

elseif ... + For RISC instruction sets, over-engineering

}
CS 4120 Introduction to Compilers 27 CS 4120 Introduction to Compilers 28
Summary

» Can specify code-generation process as a set of

tiles that relate IR trees to instruction sequences

Instructions using fixed registers problematic but

can be handled using extra temporaries

» Greedy algorithm implemented simply as recursive
traversal

» Dynamic-programming algorithm generates better
code, can also be implemented recursively using
memoization

» Real optimization will require instruction scheduling

CS 4120 Introduction to Compilers 2

