
9/13/2013

1

CS 4120

Introduction to Compilers

Ross Tate

Cornell University

Lecture 7: LR parsing and parser generators

2

Shift-reduce parsing

(1+2+(3+4))+5 ← (1+2+(3+4))+5 shift
(1+2+(3+4))+5 ← (1+2+(3+4))+5 shift
(1+2+(3+4))+5 ← (1 +2+(3+4))+5 reduce E → n

(E+2+(3+4))+5 ← (E +2+(3+4))+5 reduce S → E

(S+2+(3+4))+5 ← (S +2+(3+4))+5 shift
(S+2+(3+4))+5 ← (S+ 2+(3+4))+5 shift
(S+2+(3+4))+5 ← (S+2 +(3+4))+5 reduce E → n

(S+E+(3+4))+5 ← (S+E +(3+4))+5 reduce S → S+E

(S+(3+4))+5 ← (S +(3+4))+5 shift
(S+(3+4))+5 ← (S+ (3+4))+5 shift
(S+(3+4))+5 ← (S+(3+4))+5 shift
(S+(3+4))+5 ← (S+(3 +4))+5 reduce E → n

S → S + E | E
E → n | (S)

derivation stack input stream action

3

LR(0) states
• A state is a set of items keeping track of

progress on possible upcoming reductions

• An LR(0) item is a production from the
language with a separator “.” somewhere in
the RHS of the production

• Stuff before “.” is already on stack (beginnings

of possible γ’s to be reduced)

• Stuff after “.” : what we might see next

• The prefixes α represented by state itself

E → n .
E → (. S) state

item

LR(k) parsing

• As much power as possible out of

parsing table with k lookahead symbols

• LR(1) grammar = recognizable by a

shift/reduce parser with 1 lookahead

• LR(1) item = LR(0) + look-ahead

symbols possibly following production

4

S → . S + E

S → . S + E +

CS 4120 Introduction to Compilers

Remaining input

will reduce to

S + E + ...

LR(0):

LR(1):

5 CS 4120 Introduction to Compilers

LR(1) state

• LR(1) state = set of LR(1) items

• LR(1) item = LR(0) item + 1 lookahead

S → S . + E +

S → S . + E $

S → S + . E n

S → S . + E +, $

S → S + . E n
shorthand

LR(1) closure
Consider closure of item

Closure formed just as for LR(0) except

1. Lookahead symbols include characters following the

non-terminal symbol to the right of dot: FIRST(δ)

2. If non-terminal symbol may produce last symbol of

production (δ is nullable), lookahead symbols include

lookahead symbols of production (λ)

6 CS 4120 Introduction to Compilers

S’ → . S

S → . E + S

S → . E

E → . n

E → . (S)

1

2

A → β . C δ λ

S → S + E | E
E → n | (S)

9/13/2013

2

7 CS 4120 Introduction to Compilers

LR(1) construction

S → E . + S

S → E .

E

 + $ E
1

2

1

2

Know what to do if:

• reduce look-aheads distinct

• not to right of any dot

S → S + E | E
E → n | (S)

S’ → . S $

S → . E + S $

S → . E $

E → . n +,$

E → . (S) +,$

8 CS 4120 Introduction to Compilers

LALR grammars

• Problem with LR(1): too many states

• LALR(1) (Look-Ahead LR)

• Merge any two LR(1) states whose items

are identical except for look-ahead

• Results in smaller parser tables—works

extremely well in practice

• Common technology for automatic parser

generators

S → id . +
S → E . $

S → id . $

S → E . +
+ = S → id . +,$

S → E . $,+

LALR(1) vs. LR(1)

9

S → a E c
 → a F d
 → b F c
 → b E d
E → e
F → e

LALR(1) as LR(0)+LA(1)

10

S → a E c
 → a F d
 → b F c
 → b E d
E → e
F → e

11

LR(k)

LR(1)

LALR(1)

CS 4120 Introduction to Compilers

Classification of Grammars

SLR

LR(0)

LL(1)

LL(k)

12 CS 4120 Introduction to Compilers

How are parsers written?

• Automatic parser generators: yacc, bison, CUP

• Accept LALR(1) grammar specification

• plus: declarations of precedence,
associativity

• output: LR parser code (inc. parsing table)

• Some parser generators accept LL(1), e.g.
javacc – less powerful, or LL(k), e.g. ANTLR

9/13/2013

3

13

When reducing op conflicts
with shifting a production
containing op
• choose reduce = left assoc.
• choose shift = right assoc.

When reducing op conflicts
with shifting a production
containing op’
• choose reduce = op < op’
• choose shift = op > op’

Resolving Ambiguity

E → E + E | E * E

Can we use parsers

for programs

besides compilers?

14

