
9/20/2013

1

CS 4120

Introduction to Compilers

Ross Tate

Cornell University

Lecture 6: Bottom-Up Parsing

2 CS 4120 Introduction to Compilers

Administrivia

• Problem Set 2 out

– Due in a week

• Programming Assignment 2 out

– Due in two Mondays

• Mechanical Bull Riding

– Next Wednesday

3 CS 4120 Introduction to Compilers

Bottom-up parsing

• A more powerful parsing technology

• LR grammars -- more expressive than LL

• can handle left-recursive grammars, virtually all
programming languages

• Easier to express programming-language syntax

• Shift-reduce parsers

• construct right-most derivation of program

• automatic parser generators (e.g., yacc, CUP,
ocamlyacc)

4 CS 4120 Introduction to Compilers

Top-down parsing

• S → S+E → E+E → (S)+E
→ (S+E)+E → (S+E+E)+E
→ (E+E+E)+E → (1+E+E)+E
→ (1+2+E)+E ...

• In left-most derivation,

entire tree above a token
(2) has to be expanded
when encountered

• Must be able to predict
productions!

S

S + E

E

(S)

5

S + E

S + E (S)

S + E E

E 1
2

3

4

S → S + E | E
E → n | (S)

(1+2+(3+4))+5

5 CS 4120 Introduction to Compilers

Bottom-up parsing

• Right-most derivation

• Start with the tokens

• End with the start symbol

• (1+2+(3+4))+5 → (E+2+(3+4))+5

→ (S+2+(3+4))+5 → (S+E+(3+4))+5

→ (S+(3+4))+5 → (S+(E+4))+5

→ (S+(S+4))+5 → (S+(S+E))+5 → (S+(S))+5

→ (S+E)+5 → (S)+5 → E+5 → S+E → S

S → S + E | E
E → n | (S)

6 CS 4120 Introduction to Compilers

Progress of bottom-up parsing

(1+2+(3+4))+5 ← (1+2+(3+4))+5
(E+2+(3+4))+5 ← (1 +2+(3+4))+5
(S+2+(3+4))+5 ← (1 +2+(3+4))+5
(S+E+(3+4))+5 ← (1+2 +(3+4))+5
(S+(3+4))+5 ← (1+2+(3 +4))+5
(S+(E+4))+5 ← (1+2+(3 +4))+5
(S+(S+4))+5 ← (1+2+(3 +4))+5
(S+(S+E))+5 ← (1+2+(3+4))+5
(S+(S))+5 ← (1+2+(3+4))+5
(S+E)+5 ← (1+2+(3+4))+5
(S)+5 ← (1+2+(3+4))+5
E+5 ← (1+2+(3+4)) +5
S+E ← (1+2+(3+4))+5
S (1+2+(3+4))+5

ri
g
h

t-
m

o
st

 d
er

iv
at

io
n

9/20/2013

2

7 CS 4120 Introduction to Compilers

Bottom-up parsing
• (1+2+(3+4))+5 ←

(E+2+(3+4))+5 ←
(S+2+(3+4))+5 ←
(S+E+(3+4))+5 …

• Advantage of bottom-up

parsing: select productions

using more information

S

S + E

E

(S)

5

S + E

S + E (S)

S + E E

E 1
2

3

4

S → S + E | E
E → n | (S)

8 CS 4120 Introduction to Compilers

Top-down vs. Bottom-up

scanned unscanned scanned unscanned

Top-down Bottom-up

Bottom-up: Don’t need to figure out as much of the parse

tree for a given amount of input

9 CS 4120 Introduction to Compilers

Shift-reduce parsing

• Parsing is a sequence of shift and reduce

operations

• Parser state is a stack of terminals and non-

terminals (grows to the right)

• Unconsumed input is a string of terminals

• Current derivation step is always stack+input

10

Shift-reduce parsing

(1+2+(3+4))+5 ← (1+2+(3+4))+5 shift
(1+2+(3+4))+5 ← (1+2+(3+4))+5 shift
(1+2+(3+4))+5 ← (1 +2+(3+4))+5 reduce E → n

(E+2+(3+4))+5 ← (E +2+(3+4))+5 reduce S → E

(S+2+(3+4))+5 ← (S +2+(3+4))+5 shift
(S+2+(3+4))+5 ← (S+ 2+(3+4))+5 shift
(S+2+(3+4))+5 ← (S+2 +(3+4))+5 reduce E → n

(S+E+(3+4))+5 ← (S+E +(3+4))+5 reduce S → S+E

(S+(3+4))+5 ← (S +(3+4))+5 shift
(S+(3+4))+5 ← (S+ (3+4))+5 shift
(S+(3+4))+5 ← (S+(3+4))+5 shift
(S+(3+4))+5 ← (S+(3 +4))+5 reduce E → n

derivation stack input stream action

S → S + E | E
E → n | (S)

11 CS 4120 Introduction to Compilers

Problem

• How do we know which action to take

-- whether to shift or reduce, and

which production?

• Sometimes can reduce but shouldn’t.

• e.g., X → ε can always be reduced

• Sometimes can reduce in more than

one way.

12 CS 4120 Introduction to Compilers

Action-Selection Problem

• Given stack σ and look-ahead symbol b, should parser:

– shift b onto the stack (making it σb)

– reduce some production X → γ assuming that stack

has the form αγ (making it αX)

9/20/2013

3

13 CS 4120 Introduction to Compilers

Parser States

• Goal: know which reductions are legal at
any given point.

• Idea: summarize all possible stacks σ as
a finite parser state
• Parser state is computed by a DFA that

reads in the stack σ

• Accept states of DFA: unique reduction!

• Summarizing discards information
• affects what grammars parser handles

• affects size of DFA (number of states)

14 CS 4120 Introduction to Compilers

LR(0) parser

• Left-to-right scanning, Right-most

derivation, “zero” look-ahead

characters

• Too weak to handle most language

grammars (e.g., “sum” grammar)

• But will help us understand shift-

reduce parsing...

15 CS 4120 Introduction to Compilers

An LR(0) grammar: non-empty lists

x (x,y) (x, (y,z), w)

 ((((x)))) (x, (y, (z, w)))

S → (L) | id
L → S | L , S

S

(L)

L , S

L , S

S

w

(L)

x
L , S

S
y

z

(x,(y,z),w)

16

LR(0) states
• A state is a set of items keeping track of

progress on possible upcoming reductions

• An LR(0) item is a production from the
language with a separator “.” somewhere in
the RHS of the production

• Stuff before “.” is already on stack (beginnings

of possible γ’s to be reduced)

• Stuff after “.” : what we might see next

E → n .
E → (. S) state

item

DFA-ish

17

S → (L) | id
L → S | L, S

18 CS 4120 Introduction to Compilers

• reduce-only state: reduce

• if shift transition for look-ahead: shift

 otherwise: syntax error

• current state: push stack through DFA

Full DFA

S ’ → . S $

S → . (L)

S → . id S → (. L)

L → . S
L → . L , S
S → . (L)

S → . id

(

S → id . id

(

id

S → (L .)
L → L . , S

L

L → S .

S

L → L , . S
S → . (L)

S → . id

id
L → L , S . S

S → (L) .

)

S ’ → S . $

final state

S

$

1
2

3

4

5

6

7

8 9

S → (L) | id
L → S | L, S

,

9/20/2013

4

19

Parsing example: ((x),y)
derivation stack input action

((x),y) ← 1 ((x),y) shift, goto 3

((x),y) ← 1 (3 (x),y) shift, goto 3

((x),y) ← 1 (3 (3 x),y) shift, goto 2

((x),y) ← 1 (3 (3 x2),y) reduce S → id
((S),y) ← 1 (3 (3 S),y) shift, goto 7
((S),y) ← 1 (3 (3 S7),y) reduce L → S
((L),y) ← 1 (3 (3 L),y) shift, goto 5
((L),y) ← 1 (3 (3 L5),y) shift, goto 6

((L),y) ← 1 (3 (3 L5)6 ,y) reduce S → (L)
(S,y) ← 1 (3 S,y) shift, goto 7
(S,y) ← 1 (3 S7 ,y) reduce L → S
(L,y) ← 1 (3 L,y) shift, goto 5
(L,y) ← 1 (3 L5 ,y) shift, goto 8

(L,y) ← 1 (3 L5 ,8 y) shift, goto 9

(L,y) ← 1 (3 L5 ,8 y2) reduce S → id
(L,S) ← 1 (3 L5 ,8 S) shift, goto 9
(L,S) ← 1 (3 L5 ,8 S9) reduce L → L , S
(L) ← 1 (3 L) shift, goto 5
(L) ← 1 (3 L5) shift, goto 6
(L) ← 1 (3 L5)6 reduce S → (L)
S 1 S shift, goto 4
S 1 S4 $ done

S → (L) | id
L → S | L, S

20 CS 4120 Introduction to Compilers

Start State & Closure

Constructing a DFA to read stack:

• First step: augment grammar with production S’ → S $

• Start state of DFA: empty stack = S’ → . S $

• Closure of a state adds items for all productions whose

LHS occurs in an item in the state, just after “.”
• set of possible productions to be reduced next

• Added items have the “.” located at the beginning: no

symbols for these items on the stack yet

S’ → . S $

closure

S → (L) | id
L → S | L, S

DFA start state S’ → . S $

S → . (L)

S → . id

21 CS 4120 Introduction to Compilers

Applying terminal symbols

S ’ → . S $

S → . (L)

S → . id

S → (. L)

L → . S
L → . L , S
S → . (L)

S → . id

(

S → id .

id

In new state, include all items that have appropriate input

symbol just after dot, advance dot in those items, and take
closure.

(

id

S → (L) | id
L → S | L, S

22 CS 4120 Introduction to Compilers

Applying non-terminals

• Non-terminals on stack treated just like

terminals (but added by reductions)

S ’ → . S $

S → . (L)

S → . id

S → (. L)

L → . S
L → . L , S
S → . (L)

S → . id

(

S → id .

id (id

S → (L .)
L → L . , S

L

L → S .

S

23 CS 4120 Introduction to Compilers

Applying reduce actions

• Pop RHS off stack, replace with

LHS X (X→γ), rerun DFA (e.g. (x))

S ’ → . S $

S → . (L)

S → . id

S → (. L)

L → . S
L → . L , S
S → . (L)

S → . id

(

S → id .

id
(id

S → (L .)
L → L . , S

L

L → S .

S

states causing
reductions

24 CS 4120 Introduction to Compilers

LR(0) Limitations
• An LR(0) machine only works if states with

reduce actions have a single reduce action --

in those states, always reduce ignoring

lookahead

• With more complex grammar, construction

gives states with shift/reduce or

reduce/reduce conflicts

• Choose based on lookahead.

L → L , S .
L → L , S .
S → S . , L

shift /reduce

L → S , L .
L → S .

reduce / reduce ok

9/20/2013

5

25 CS 4120 Introduction to Compilers

An LR(0) grammar?
S → S + E | E
E → n | (S)

• Left-associative version: LR(0)

• Right-associative version

– not LR(0)

S → E + S | E
E → n | (S)

26 CS 4120 Introduction to Compilers

LR(0) construction

S’ → . S $

S → . E + S
S → . E
E → . num

E → . (S)

S → E . + S
S → E .

E

What to do in state 2?

 + $ E
1 s2

2 s3/S→E S→E

1

2

S → E + . S
3 +

S → E + S | E
E → n | (S)

27 CS 4120 Introduction to Compilers

SLR grammars

• Idea: Only add reduce action to

table if lookahead symbol is in the

FOLLOW set of the non-terminal

being reduced

• Eliminates some conflicts

• FOLLOW(S) = { $,) }

• Many language

 grammars are SLR

 + $ E
1 2

2 s3/S→E S→E

