
8/29/2013

1

CS 4120 Introduction to Compilers

CS4120/4121

Introduction to Compilers

Ross

Lecture 2: Lexical Analysis

2

CS 4120 Introduction to Compilers

Administration

• HW1 out later today – due next

Monday.

3

CS 4120 Introduction to Compilers

Compilation Recap

Source code
(character stream)

Lexical analysis

Parsing

Token
stream

Abstract syntax
tree (AST)

Semantic Analysis

if (b == 0) a = b;

if (b) a = b ; 0 ==

if
==

b 0

=

a b

if

==

int b int 0

=

int a
lvalue

int b

boolean

Decorated AST
int ;

;

4

CS 4120 Introduction to Compilers

First step: lexical

analysis
Source code
(character stream)

Lexical analysis

Parsing

Token stream

Semantic Analysis

if (b == 0) a = “hi”;

if (b) a = “hi” ; 0 ==

5

CS 4120 Introduction to Compilers

Tokens

• Identifiers: x y11 elsex _i00

• Keywords: if else while break

• Integers: 2 1000 -500 5L

• Floating point: 2.0 0.00020 .02 1.

1e5 0.e-10

• Symbols: + * { } ++ < << [] >=

• Strings: “x” “He said, \“Are you?\””

• Comments: /** don’t change this **/

6

CS 4120 Introduction to Compilers

Ad-hoc lexer

• Hand-write code to generate tokens

• How to read identifier tokens?
Token readIdentifier() {

 String id = “”;

 while (true) {

 char c = input.read();

 if (!identifierChar(c))

 return new Token(ID, id, lineNumber);

 id = id + String(c);

 }

}

8/29/2013

2

7

CS 4120 Introduction to Compilers

• Scan text one character at a time

• Use look-ahead character (next) to
determine what kind of token to read
and when the current token ends

char next;

…

while (identifierChar(next)) {

 id = id + String(next);

 next = input.read ();

}

Look-ahead character

e l s e x

next

8

CS 4120 Introduction to Compilers

Ad-hoc lexer: top-level loop
class Lexer {

 InputStream s;

 char next;

 Lexer(InputStream s_) { s = s_; next = s.read(); }

 Token nextToken() {

 if (identifierChar(next))

 return readIdentifier();

 if (numericChar(next))

 return readNumber();

 if (next == ‘\”’) return readStringConst();

 …

 }

}

Preloading next.

Alternative: define

input streams that

support lookahead

automatically

9

CS 4120 Introduction to Compilers

Problems

• Don’t know what kind of token we are going
to read from seeing first character

– if token begins with “i’’ is it an identifier or “if”?

– if token begins with “2” is it an integer constant?

– interleaved tokenizer code is hard to write
correctly, harder to maintain

• A more principled approach: lexer generator
that generates efficient tokenizer
automatically (e.g., lex, Jlex, ANTLR) from a
lexical specification.

Lexer Generator

• Input

– Description of the tokens

– Prioritization of the tokens

– Actions for the tokens

• Output

– A lexer

• Matching the specification

• Efficient (linear time)

10

11

CS 4120 Introduction to Compilers

Issues

• How to describe tokens unambiguously

2.e0 20.e-01 2.0000

“” “x” “\\” “\”\’”

• How to break text up into tokens

if (x == 0) a = x<<1;

if (x == 0) a = x<1;

• How to tokenize efficiently

– tokens may have similar prefixes

– want to look at each character O(1) times

12

CS 4120 Introduction to Compilers

How to Describe Tokens

• Programming-language tokens can (often) be

described using regular expressions

• Regular expression R describes a set of

strings L(R):

L(R) is the “language” defined by R

– L(abc) = { abc }

– L(hello|goodbye) = {hello, goodbye}

– L([1-9][0-9]*) = all positive integer constants

– L(X(Y|Z)) = L(XY|XZ) = L(XY) ⋃ L(XZ)

• Idea: define each kind of token using REs

8/29/2013

3

13

CS 4120 Introduction to Compilers

Regular-Expression Notation

a an ordinary character stands for itself

ε the empty string

R|S any string from either L(R) or L(S):

 L(R|S)=L(R)⋃ L(S)

RS string from L(R) followed by one from L(S):

 L(RS) = {rs | r∈L(R) ^ s∈L(S)}

R* zero or more strings from L(R), concatenated

 ε|R|RR|RRR|RRRR|… (“Kleene star”)

14

CS 4120 Introduction to Compilers

Examples
Regular Expression R Strings in L(R)

a “a”

ab “ab”

a | b “a” “b”

ε “”

(ab)* “” “ab” “abab” …

(a|ε)b “ab” “b” (=a?b)

15

Convenient RE Shorthand

R+ one or more strings from L(R): = R(R*)

R? an optional R: = (R|ε)

[abce] one of the listed characters: (a|b|c|e)

[a-z] one char from the range: (a|b|c|d|e|...)

[^ab] anything but one of the listed chars

[^a-z] one character not from the range

 (~[ab] and ~[a-z] in ANTLR)

R{n} n repetitions of R (RRRR…)

\x0A ASCII 10 (newline)

\n also newline

 16

CS 4120 Introduction to Compilers

More Examples (JFlex)
Regular Expression Strings in L(R)

digit = [0-9] “0” “1” “2” “3” …

posint = {digit}+ “8” “412” …

int = -? {posint} “-42” “1024” …

real = {int} (. posint)? “-1.56” “12” “1.0”

 = (-| ε)(0|…|9)(0|...|9)*(ε | (. (0|...|9)(0|...|9)*))

[a-zA-Z_][a-zA-Z0-9_]* C identifiers

• Lexer generators support abbreviations –
cannot be recursive. Forbidden: foo = a{foo}| ε

– Actually, ANTLR v4 can! And you’ll need it

17

CS 4120 Introduction to Compilers

Zero-width assertions

• Not strictly regular expressions…

• Not supported by all lexer generators.

^R matches R if preceded by newline

R$ matches R if followed by newline

\b match a word boundary (Perl)

\A match beginning of input (Perl)

R1/R2 matches R1 if followed by

 something matching R2 (lex)

17 18

CS 4120 Introduction to Compilers

How to break up text

elsex = 0;

• REs alone not enough: need rule for choosing

• Most languages: longest matching token wins –
even if a shorter token is only way to parse tokens.

– Exception: early FORTRAN (totally whitespace-
insensitive)

– Ties in length resolved by prioritizing tokens

• RE’s + priorities + longest-matching token rule =
lexer definition

else x =

elsex =

0

0

1

2

8/29/2013

4

19

CS 4120 Introduction to Compilers

Lexer-Generator Spec

• Input to lexer generator:
– list of regular expressions in priority order

– associated action for each RE (generates
appropriate kind of token, other bookkeeping)

• Output:
– program that reads an input stream and breaks

it up into tokens according to the REs. (Or
reports lexical error -- “Unexpected character”)

20

CS 4120 Introduction to Compilers

Example: ANTLR v4
lexer grammar XiLexer;

ELSE : 'else';

ID : ([a-zA-Z]) ([a-zA-Z_0-9]|'\'')*;

SLASH : '/';

WS : [\t\r\n]+ -> skip;

COMMENT : '//' .*? [\r\n] -> skip;

21

CS 4120 Introduction to Compilers

Lexer States

• Most lexer generators allow conditioning

on lexer state. Helps with long tokens

(strings, comments):

“/*” { yybegin(COMMENT); }

<COMMENT> {

 “*/” { yybegin(YYINITIAL); }
.|\n { /* ignore */ }

}

22

CS 4120 Introduction to Compilers

Summary

• Lexical analyzer converts a text stream to tokens

• Ad-hoc lexers hard to get right, maintain

• For most languages, legal tokens conveniently,

precisely defined using regular expressions

• Lexer generators generate lexer code

automatically from token RE’s, precedence

• Next lecture: how lexer generators work

23

CS 4120 Introduction to Compilers

Groups

• If you don’t have a full group lined
up, hang around and talk to
prospective group members

• Send mail to cs4120-l if you still
cannot make a full group (can also
post to Piazza)

