8/27/2013

CS 4120/4121
CS 5120/5121

Introduction to Compilers
Fall 2013
Ross (Tate)

Lecture 1: Overview

€S 4120 Introduction to Compilers

Outline

» About this course

* Introduction to compilers
—What are compilers?
—Why should we learn about them?
—Anatomy of a compiler

* Introduction to lexical analysis
—Text stream to tokens

€S 4120 Introduction to Compilers

Course Information

MWF 1:30- 2:15¢u in Olin 245
Instructor: Ross Tate

Teaching Assistants:

Fabian Mihlbdck, Sam Hopkins, Lee Gao

» E-mail: cs4120-l@cs.cornell.edu

* Web page:
http://www.cs.cornell.edu/courses/cs4120

* Newsgroup:

https://piazza.com/class#fall2013/cs4120

4=5&0=1

* CS 4120 and 5120 are really
the same course

— same lectures
— same assignments or nearly so
— 5120 is for MEng students, 4120 for others

*+ CS 4121 (5121) is required!

— most coursework is in the project

€S 4120 Introduction to Compilers

Textbooks

Lecture notes provided; no required textbook

On reserve in Uris Library:

— Compilers—Principles, Techniques and Tools. Aho, Lam,
Sethi and Uliman (The Dragon Book)
(strength: parsing)

— Modern Compiler Implementation in Java. Andrew Appel.
(strength: translation)

— Advanced Compiler Design and Implementation. Steve
Muchnick.

(strength: optimization)

CS 4120 Introduction to Compilers

Work

* Homeworks: 5, 35% total

—6-8% each

* Programming Assignments: 7, 65%

—7-13% each

* Exams: None

€S 4120 Introduction to Compilers

http://www.cs.cornell.edu/courses/cs4120

8/27/2013

Academic integrity

» Taken seriously.

» Do your own (or your group’s) work.

* Report who you discussed homework
with (whether student in class or not).

* Feel free to share test inputs on Piazza.

7

Homeworks

* Three assignments in first half of
course; two homeworks in second half

» Not done in groups—you may discuss
with others but do your own work

—Report who you discussed homework with

€S 4120 Introduction to Compilers

Projects

» Seven programming assignments
« Implementation language: Java
— or anything you can compile to an executable jar
» Groups of 3-4 students
— same group for entire class (ordinarily)
— same grade for all (ordinarily)
— workload and success in this class depend on working and
planning well with your group. Be a good citizen.
— tell us early if you are having problems.
« End of this class: some time to form groups
— create your group on CMS for PA1.
— contact us if you are having trouble finding a group.

€S 4120 Introduction to Compilers

Assignments

* Due at midnight on due date

Late homeworks, programming assignments
increasingly penalized

— 1 day: 5%, 2 days: 15%, 3 days: 30%, 4 days: 50%
— weekend = 1 day

— Extensions often granted, but must be approved 2
days in advance

* Projects submitted via CMS
* Solutions available via CMS

€S 4120 Introduction to Compilers

Why take this course?

* CS 4120 is an elective course
» Expect to learn:

— practical applications of theory, algorithms, data structures
— parsing

— deeper understanding of what code is

— how high-level languages are implemented

— alittle programming-language semantics

— Intel x86 architecture, Java

— how programs really execute on computers

— how to be a better programmer (esp. in groups)

CS 4120 Introduction to Compilers

What are Compilers?

» Translators from one representation of
program code to another

* Old: high-level source code to machine
language (object code)

* Modern:
—High-level to mid-level (Java to bytecode)
— Mid-level to low-level (bytecode to x86)

€S 4120 Introduction to Compilers

8/27/2013

Source Code

» Source code: optimized for human readability
— expressive: matches human notions of grammar
— redundant to help avoid programming errors
— computation possibly not fully determined by code

int expr(int n)

{
int d;
d=4*n*n* (n+1) * (n+ 1);
return d;

}

€S 4120 Introduction to Compilers

Machine code

» Optimized for hardware
—Redundancy, ambiguity reduced
—Information about intent and reasoning lost
—Assembly code = machine code

expr:

pushl ebp 55

ovl %esp, tebp 89

subl $4, besp 83 ec 04
movl B (bebp), $eax 8b 45 08
movl %eax, ke 89 c2
imull 8 (%ebp), tedx 0f af 55 08
movl 8 (%ebp), %eax 8b 45 08
incl teax

imull %eax, %e gg gg gg
movl 8 (%ebp) , %eax

incl ax

imull %edx, %eax 9f af 2
sl 2.%% erp 89 45 fo
mov. eax, -
movl -4(sebp), senx 8b 45 fe
leave t 3

Example (Output assembly code)

Unoptimized Code Optimized Code

expr: expr:

pushl %ebp pushl %ebp
movl %esp, %ebp movl %esp, %eb§
subl $4, fes movl 8(%ebp), bedx
movl 8(%ebp), %eax movl %edx, seax
movl %eax, sedx imull %edx, %eax
imull 8 (%ebp), %edx inecl $edx
movl 8(%ebp), %eax imull %edx, %eax
incl %eax imull Sedx, %eax
imull %eax, %edx sall $2, beax
movl 8(%ebp), seax leave
incl %eax ret
imull %edx, %e

1 $2, %eax
movl %eax, -4 (sebp)
movl -4(%ebp), %eax
leave
ret

€S 4120 Introduction to Compilers

How to translate?

» Source-code and machine-code mismatch

Goals:

— source-level expressiveness for task

— best performance for concrete computation
—reasonable translation efficiency (< O(n3))
— maintainable compiler code

€S 4120 Introduction to Compilers

How to translate
correctly?

Programming languages describe computation precisely
Therefore: translation can be precisely described (a
compiler can be correct)

Correctness is very important!

— hard to debug programs with broken compiler...

— non-trivial: programming languages are expressive

— implications for development cost, security

— this course: techniques for building correct compilers

— some compilers have been proven correct!
[X. Leroy, Formal Certification of a Compiler Back End, POPL '06]

CS 4120 Introduction to Compilers

How to translate effectively?

Puasel Prase2 PHase3

(dnllu'l ? Profit
‘rpant
unacrpants -

CS 4120 Introduction to Compilers

8/27/2013

Idea: translate in steps

» Compiler uses a series of different
program representations.

* Intermediate representations that
are good for program manipulations
of various kinds (analysis,
optimization, code generation).

€S 4120 Introduction to Compilers

Compilation in a Nutshell 1

Lexical analysis

Source code if (b==0)a=b;
(character stream)

token [P PP FFFE]
stream
A~
Abstract syntax _/ N ’
tree (AST) b a
if NS Semantic Analysis

5

LI _
Decorated AST b/“\ 0 _é\ b

€S 4120 Introduction to Compilers

Compilation in a Nutshell 2

ifb==0gotoLlelsel2 ---~

L1:a=b

L2: [Optimization, Code Generation]
emp 7, 0 =TT - " ——
jnz 12 [Register allocation, optimization|
Ll: mov r,, I,
L2: cmp ecx, 0

cmovz [ebp+8],ecx

€S 4120 Introduction to Compilers
21

Simplified Compiler Structure

Source code
(character stream)

if(b==0)a=b; Lexical analysis
Token stream

Front end

Abstract syntax tree (machine-independent)

Program | [intermediate-Code Generation|
analysis Intermediate code
& Control flow graphs

Optimization | rede seneration Back end
(machine-dependent)
Assembly code 41;
cmp 0, %rex

cmovz %rcx, %rdx

Even bigger picture

Source code

Assembly code

Object code
(machine code +

. symbol tables)
Fully-resolved object

code (machine code +
symbol tables,
relocation info)

Executable image in memory

CS 4120 Introduction to Compilers
23

CubeX

interface List<E> {
fun elements() : Iterable<E>;

class Nil() extends List<Nothing> {
fun elements() : Iterable<Nothing>
{return []; }
}
class Cons<E>(E head, List<E> tail)
extends List<Nothing> {
elems := [head] ++ tail.elements();
fun elements() : Iterable<E> {return elems;}

24

8/27/2013

CubeX

Object-Oriented
Generics
Pure except for non-termination

Memory managed

25

Project

* Compile CubeXto C
—With optimizations
» Choice of Extension, such as
—Compile to x86
—Variance and inference
—Recursive inheritance
and F-bounded polymorphism
— Continuation-based custom iterables
—Iterable comprehensions and liftings

26

