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These notes are not yet complete.

1 Inline caching
2 Sparse dispatch tables

3 Binary decision trees

These three topics are covered in the slides.

4 Using multiple dispatch tables for separate compilation

To deal with method index conflicts among superclasses, C++ may use multiple dispatch tables per object,
and multiple references to the object. Which dispatch is to be used depends on which references to the
object is used.

Different C++ implementations use different object layouts, but here is one possibility. Consider the
following three classes:

class Shape {
bounds ()
X,y¥,Z: num

}

class Color {
rgb()
hsv()
r,g,b: num

}

class Graphics extends Shape, Color {
draw()
location: int

}

For separate compilation the method indices for Shape and Color have to both be assigned independently.
So both start methods in their dispatch table at zero:
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We can merge both these layouts into a single object, but we need separate dispatch tables because
bounds () and rgb() use the same method index:
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X draw
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Color —» o > rgb
r hsv
9
b

There are two distinct “views” of the object, one as either a Graphic or a Shape, and one as a Color. To
switch between these views, some computation is required. For example, we might subsumption to view a
Graphic as a Color:

Graphic = new Graphic();
Color c g;

We might expect that the assignment c=g involves no computation, but in fact it is necessary to add 40
to the address of g.

The result is fast dispatch in the usual case, but high per-object overhead, since we have two dispatch
table pointers per object rather than just one. Supporting pointers to the interior of objects makes garbage
collectors more complex and probably a little slower.

It’s possible to put the methods of Color also into the Graphic dispath table, but since different class
code expects different views of the receiver object, a trampoline is needed to bump the receiver pointer to the
correct view.

This layout merges the dispatch tables for Graphic and Shape. In general, one can merge a class with that
of one of its superclasses or implemented interfaces. There are more complex schemes for merging multiple
dispatch tables more effectively, such as bidirectional dispatch tables. With a bidirectional layout, a class
hierarchy that uses multiple inheritance only to allow a class to extend one other class and to implement
one interface requires only a single dispatch table. This is possible by having the dispatch table grow in
opposite directions.

5 Fields and multiple inheritance

Even the offsets to fields can conflict with with multiple inheritance. For eaxmple, consider this inheritance
hierarchy:

Object

VRN

Shape Color

N/

Graphic

The code of both Shape and Color might need access to the fields of Object. But in a Graphic object,
those fields can’t be located at the same offset from the Shape and Color fields as in the Shape and Color
object 1ayoutsE]

1Ac’tually, C++ offers a version of “non-virtual” inheritance in which the fields are located at the same offset, but at the cost of
duplicating the Object fields, which has strange semantics.



One way to solve the problem is to introduce internal pointers within the object between different views
of the same object. This gives fast access to the fields of the current class view, and imposes no space or time
overhead when inheritance is not being used. However, it has high per-object overhead even when single
inheritance is being used. And internal pointers are a demanding feature that probably make the garbage
collector slower.

A probably better idea is to store the offsets to fields in the dispatch table. Each field has a dispatch table
index that can be consulted to find the field. Dispatch table indices can be assigned using graph coloring
or by using multiple dispatch tables. For example, the following figure shows how the object layout might
look assuming that dispatch table indices are assigned using graph coloring, so that there is a single dispatch
table.

@ ——»| Object methods
Object fields Object offset: 8
X bounds
y Shape offset: 16
z rgb
r hsv
g Color offset: 40
b draw
location Graphic offset: 64

The sequence to access a field is more expensive than the usual indexed load. Before multiple inheritance,
an access like o. f could be implemented as movk((o), t, where k; is a known constant offset. With this object
layout, accesses are more complex:

mov (o), t2
mov mf(tZ), t3
mov kf(t2, t3), tl

The offset m is the location in the dispatch table of the field offset; the offset kf is the offset within the
subobject of the particular field. Since the offset t3 is a constant, CSE can be used to avoid fetching it more
than once.

This approach has much lower space overhead than using internal pointers, and access to fields from
other class views are faster. However, access to fields of the current class view is slower, and there is a
performance penalty even when inheritance is not being used.
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