
Xi Type System Specification

Computer Science 4120
Cornell University

Version of October 2, 2011

Changes

• October 2: Made ARRAYDECL more general to match up with the language spec.

• September 30: Fixed bugs reported in recitation and some more. Tuple expressions and types may
have 0 or 1 elements.

• September 29: Fixed syntax in ARRASSIGN.

Types

The Xi type system uses a somewhat bigger set of types than can be expressed explicitly in the source
language:

τ ::= int

| bool
| τ[]

R ::= unit | void
T ::= τ

| (τ1, τ2, . . . , τn) (n≥0)

| R
σ ::= var τ

| T1 → T2

Ordinary types expressible in the language are denoted by the metavariable τ , which can be int, bool,
or an array type.

The metavariable R represent the outcome of evaluating a statement. It can be either unit or void.
The type unit is used in various ways. It is the type of ordinary statements. It gives a type to the

left-hand side of pattern-matching assignments that use the placeholder, which lets their handling be
integrated directly into the type system. The unit type is also used to represent the result type of procedures
and the type of statements that may complete normally and permit the following statement to execute.

The type void is the type of statements such as return that pass control to a following statement. It
should not be confused with the C type void, which is actually closer to unit.

The metavariable T denotes an expanded notion of type that includes the parameter types and return
types of procedures and functions. It may be an ordinary type, a tuple type, unit, or void.

Tuple types represent the parameters or return types of functions that take multiple argument or return
multiple results.

The set σ is used to represent typing environment entries, which can either be normal variables (bound
to var τ for some type τ) or functions (bound to τ → τ ′ where τ ′ 6= unit), or procedures (bound to

1

τ → unit), where the “result type” (unit) indicates that the procedure result contains no information other
than that the procedure call terminated.

Subtyping

The subtyping relation on T is the least partial order consistent with this rule:

τ ≤ unit

However, there is not (for now) a subsumption rule, so subtyping matters only where it appears explic-
itly.

Type-checking expressions

To type-check expressions, we need to know what bound variables and functions are in scope; this is rep-
resented by the typing context Γ, which maps names x to types σ.

The judgment Γ ` e : τ is the rule for the type of an expression; it states that with bindings Γ we can
conclude that e has the type τ .

We use the metavariable symbols x or f to represent arbitrary identifiers, n to represent a numeric
constant, string to represent a literal string constant, and char to represent a literal character constant. Using
these conventions, the expression typing rules are:

Γ ` n : int Γ ` true : bool Γ ` false : bool Γ ` string : int[] Γ ` char : int

Γ(x) = var τ

Γ ` x : τ
Γ ` e1 : int Γ ` e2 : int ⊕ ∈ {+,−, /, ∗,%}

Γ ` e1 ⊕ e2 : int

Γ ` e : int
Γ ` −e : int

Γ ` e1 : int Γ ` e2 : int 	 ∈ {==, ! =, <,<=, >,>=}
Γ ` e1 	 e2 : bool

Γ ` e : bool
Γ ` !e : bool

Γ ` e1 : bool Γ ` e2 : bool 	 ∈ {==, ! =,&, |}
Γ ` e1 	 e2 : bool

Γ ` e : τ[]
Γ ` length e : int

Γ ` e1 : τ[] Γ ` e2 : τ[] 	 ∈ {==, ! =}
Γ ` e1 	 e2 : bool

Γ ` e1 : τ . . . Γ ` en : τ n ≥ 0
Γ ` (e1, . . . , en) : τ[]

Γ ` e1 : τ[] Γ ` e2 : τ[]
Γ ` e1 + e2 : τ[]

Γ ` e1 : τ[] Γ ` e2 : int
Γ ` e1[e2] : τ

Γ(f) = (τ1, . . . , τn)→ τ ′ Γ ` ei : τi (∀i∈1..n)

Γ ` f(e1, . . . , en) : τ ′

Type-checking statements

To type-check statements, we need all the information used to type-check expressions, plus the types of
procedures, which are included in Γ. In addition, we extend the domain of Γ a little to include two special
symbols, ρ and β. To check the return statement we need to know what the return type of the current
function is or if it is a procedure. Let this be denoted by Γ(ρ), which is some type τ if the statement is
part of a function, or unit if the statement is in a procedure. For break statements, we also need to check
whether we are inside a loop, which we will denote as Γ(β), which is unit if we are inside a loop and void
if we are not. Since statements include declarations, they can also produce new variable bindings, resulting
in an updated typing context which we will denote as Γ′. To update typing contexts, we write Γ[x 7→ τ],
which is an environment exactly like Γ except that it maps x to τ . We use the metavariable s to denote

2

a statement, so the main typing judgment for statements has either the form Γ ` s : unit,Γ′ or the form
Γ ` s : void,Γ′.

Most of the statements are fairly straightforward, and do not change Γ. However, statements like break
and return are a bit tricky because their type is void.

Γ ` e : bool Γ ` s : R,Γ′

Γ ` if (e) s : unit,Γ
(IF)

Γ ` e : bool Γ ` s1 : R1,Γ′ Γ ` s2 : R2,Γ′′

Γ ` if (e) s1 else s2 : lub(R1, R2),Γ
(IFELSE)

Γ ` e : bool Γ[β 7→ unit] ` s : R,Γ′

Γ ` while (e) s : unit,Γ
(WHILE)

Γ ` s1 : unit,Γ1 Γ1 ` s2 : unit,Γ2 . . . Γn−2 ` sn−1 : unit,Γn−1 Γn−1 ` sn : R,Γn

Γ ` {s1; s2; . . . ; sn} : R,Γn
(BLOCK)

Γ(f) = τ → unit Γ ` e : τ
Γ ` f(e1, . . . , en) : unit,Γ

(PRCALL)
Γ(β) = unit

Γ ` break : void,Γ
(BREAK)

Γ(ρ) = unit

Γ ` return : void,Γ
(RETURN)

Γ(ρ) = τ 6= unit Γ ` e : τ
Γ ` return e : void,Γ

(RETVAL)

The function lub is defined as lub(R,R) = R and lub(unit, R) = lub(R, unit) = unit. Therefore the type
of an if is void only if both branches have that type.

Assignments require checking the left-hand side to make sure it is assignable:

Γ(x) = var τ Γ ` e : τ
Γ ` x = e : unit,Γ

(ASSIGN)
Γ ` e1 : τ[] Γ ` e2 : int Γ ` e3 : τ

Γ ` e1[e2] = e3 : unit,Γ
(ARRASSIGN)

Declarations are the source of new bindings. Three kinds of declarations can appear in the source lan-
guage: regular variable declarations, tuple declarations, and function/procedure declarations. We are only
concerned with the first two kinds within a function body. To handle tuples, we define a declaration d that
can appear within a tuple:

d ::= x : τ |

and define functions typeof (d) and varsof (d) as follows: typeof (x : τ) = τ and typeof () = unit, and
varsof (x :τ) = {x} and varsof () = ∅. Using these notations, we have the following rules:

x 6∈ dom(Γ)
Γ ` x :τ : Γ[x 7→ τ]

(VARDECL)
x 6∈ dom(Γ) Γ ` e : τ
Γ ` x :τ = e : Γ[x 7→ τ]

(VARINIT)

The following rule for array declarations with specified sizes is intended to capture the essence of type
checking them, though we have sacrificed a bit of formal precision for the sake of readability. The declared
variable is added to the typing context with a type with the same number of array dimensions.

x 6∈ dom(Γ) Γ ` ei : int (∀i∈1..n)

Γ ` x :τ
−→
[e]
−→
[] : Γ[x 7→ τ

−→
[]
−→
[]]

(ARRAYDECL)

Γ(f) = (τ ′1, . . . , τ
′
m)→ (τ1, . . . , τn) Γ ` ei : τ ′i

(∀i∈1..m) τi ≤ typeof (di) (∀i∈1..n)

dom(Γ) ∩ varsof (di) = ∅ (∀i∈1..n) varsof (di) ∩ varsof (dj) = ∅ (∀i,j∈1..n|j 6=i)

Γ ` d1, . . . , dn = f(e1, . . . , em) : Γ[xi 7→ typeof (di) (∀i∈1..n,xi | varsof (di)={xi})]
(TUPLEDECL)

The final premise in rule TUPLEDECL prevents shadowing by ensuring that dom(Γ) and all of the varsof (di)
are disjoint from each other.

3

Top-level declarations

At the top level of the program, we need to figure out the types of procedures and functions, and make sure
their bodies are well-typed. Since mutual recursion is supported, this needs to be done in two passes. First,
we use the judgment Γ ` fd : Γ′ to state that the function or procedure declaration fd extends top-level
bindings Γ to Γ′:

f 6∈ dom(Γ)
Γ ` f(x :τ) : τ ′ = s : Γ[f 7→ τ → τ ′]

f 6∈ dom(Γ) n ≥ 2 Γ′ = Γ[f 7→ (τ1, τ2, . . . , τn)→ τr]
Γ ` f(x1 :τ1, x2 :τ2, . . . , xn :τn) : τr = s : Γ′

f 6∈ dom(Γ)
Γ ` f(x :τ) = s : Γ[f 7→ τ → unit]

f 6∈ dom(Γ) n ≥ 2 Γ′ = Γ[f 7→ (τ1, τ2, . . . , τn)→ unit]
Γ ` f(x1 :τ1, x2 :τ2, . . . , xn :τn) = s : Γ′

The second pass over the program is captured by the judgment Γ ` fd def, which defines how to check
well-formedness of each function definition against a top-level environment Γ, ensuring that parameters
do not shadow anything and that the body is well-typed. The body of a function definition must have type
void, which ensures that the function body does not fall off the end without returning. We treat procedures
just like functions that return the unit type. Therefore their bodies are allowed to have type unit.

x 6∈ dom(Γ) Γ[x 7→ τ, ρ 7→ τ ′, β 7→ void] ` s : void,Γ′

Γ ` f(x :τ) : τ ′ = s def

|dom(Γ) ∪ {x1, . . . , xn}| = |dom(Γ)| + n
Γ[x1 7→ τ1, . . . , xn 7→ τn, ρ 7→ τ ′, β 7→ void] ` s : void,Γ′

Γ ` f(x1 :τ1, . . . , xn :τn) : τ ′ = s def

x 6∈ dom(Γ) Γ[x 7→ τ, ρ 7→ unit, β 7→ void] ` s : unit,Γ′

Γ ` f(x :τ) = s def

|dom(Γ) ∪ {x1, . . . , xn}| = |dom(Γ)| + n
Γ[x1 7→ τ1, . . . , xn 7→ τn, ρ 7→ unit, β 7→ void] ` s : unit,Γ′

Γ ` f(x1 :τ1, . . . , xn :τn) = s def

Checking a program

Using the previous judgments, we can define when an entire program fd1 . . . fdn is well-formed, written
` fd1 . . . fdn prog:

∅ ` d1 : Γ1 Γ1 ` d2 : Γ2 . . . Γn−1 ` dn : Γn

Γn ` d1 def Γn ` d2 def . . . Γn ` dn def
` fd1 fd2 . . . fdn prog

4

