CS 4110

Programming Languages \& Logics

Lecture 28

Existential Types

Namespaces

It's no fun to program in a language with a single, global namespace: C, FORTRAN, and PHP until depressingly recently.

Namespaces

It's no fun to program in a language with a single, global namespace: C, FORTRAN, and PHP until depressingly recently.

Components of a large program have to worry about name collisions.

And components become tightly coupled: any component can use a name defined by any other.

Modularity

A module is a collection of named entities that are related.
Modules provide separate namespaces: different modules can use the same names without worrying about collisions.

Modules can:

- Choose which names to export
- Choose which names to keep hidden
- Hide implementation details

Existential Types

In the polymorphic λ-calculus, we introduced universal quantification for types.

$$
\tau::=\cdots|\alpha| \forall \alpha . \tau
$$

Existential Types

In the polymorphic λ-calculus, we introduced universal quantification for types.

$$
\tau::=\cdots|\alpha| \forall \alpha . \tau
$$

If we have \forall, why not \exists ? What would existential type quantification do?

$$
\tau::=\cdots|\alpha| \exists \alpha . \tau
$$

Existential Types

Together with records, existential types let us hide the implementation details of an interface.

Existential Types

Together with records, existential types let us hide the implementation details of an interface.
\exists Counter.
\{ new : Counter, get : Counter \rightarrow int, inc : Counter \rightarrow Counter $\}$

Existential Types

Together with records, existential types let us hide the implementation details of an interface.
\exists Counter.
\{ new : Counter, get : Counter \rightarrow int, inc : Counter \rightarrow Counter $\}$

Here, the witness type might be int:

$$
\begin{aligned}
& \{\text { new }: \text { int, } \\
& \quad \text { get }: \text { int } \rightarrow \text { int, } \\
& \text { inc }: \text { int } \rightarrow \text { int }\}
\end{aligned}
$$

Existential Types

Let's extend our STLC with existential types:

$$
\begin{aligned}
\tau: & :=\text { int } \\
& \mid \tau_{1} \rightarrow \tau_{2} \\
& \mid\left\{l_{1}: \tau_{1}, \ldots, l_{n}: \tau_{n}\right\} \\
& \mid \exists \alpha . \tau \\
& \mid \alpha
\end{aligned}
$$

Syntax \& Dynamic Semantics

We'll tag the values of existential types with the witness type.

Syntax \& Dynamic Semantics

We'll tag the values of existential types with the witness type.
A value has type $\exists \alpha . \tau$ is a pair $\left\{\tau^{\prime}, v\right\}$ where v has type $\tau\left\{\tau^{\prime} / \alpha\right\}$.

Syntax \& Dynamic Semantics

We'll tag the values of existential types with the witness type.
A value has type $\exists \alpha . \tau$ is a pair $\left\{\tau^{\prime}, v\right\}$ where v has type $\tau\left\{\tau^{\prime} / \alpha\right\}$.

We'll add new operations to construct and destruct these pairs:

$$
\begin{gathered}
\text { pack }\left\{\tau_{1}, e\right\} \text { as } \exists \alpha . \tau_{2} \\
\text { unpack }\{\alpha, x\}=e_{1} \text { in } e_{2}
\end{gathered}
$$

$$
\begin{aligned}
e & ::=x \\
& \mid \lambda x: \tau . e \\
& \mid e_{1} e_{2} \\
& \mid n \\
& \mid e_{1}+e_{2} \\
& \mid\left\{l_{1}=e_{1}, \ldots, l_{n}=e_{n}\right\} \\
& \mid \text { e.l } \\
& \mid \text { pack }\left\{\tau_{1}, e\right\} \text { as } \exists \alpha . \tau_{2} \\
& \mid \text { unpack }\{\alpha, x\}=e_{1} \text { in } e_{2} \\
v & :=n \\
& \mid \lambda x: \tau . e \\
& \mid\left\{l_{1}=v_{1}, \ldots, I_{n}=v_{n}\right\} \\
& \mid \text { pack }\left\{\tau_{1}, v\right\} \text { as } \exists \alpha . \tau_{2}
\end{aligned}
$$

Dynamic Semantics

$$
\begin{aligned}
E & ::=\ldots \\
& \mid \text { pack }\left\{\tau_{1}, E\right\} \text { as } \exists \alpha . \tau_{2} \\
& \mid \text { unpack }\{\alpha, x\}=E \text { in } e
\end{aligned}
$$

unpack $\{\alpha, x\}=\left(\operatorname{pack}\left\{\tau_{1}, v\right\}\right.$ as $\left.\exists \beta . \tau_{2}\right)$ in $e \rightarrow e\{v / x\}\left\{\tau_{1} / \alpha\right\}$

Static Semantics

$$
\frac{\Delta, \Gamma \vdash e: \tau_{2}\left\{\tau_{1} / \alpha\right\}}{\Delta, \Gamma \vdash \operatorname{pack}\left\{\tau_{1}, e\right\} \operatorname{as} \exists \alpha . \tau_{2}: \exists \alpha . \tau_{2}}
$$

Static Semantics

$$
\frac{\Delta, \Gamma \vdash e: \tau_{2}\left\{\tau_{1} / \alpha\right\}}{\Delta, \Gamma \vdash \operatorname{pack}\left\{\tau_{1}, e\right\} \operatorname{as} \exists \alpha . \tau_{2}: \exists \alpha . \tau_{2}}
$$

$$
\frac{\Delta, \Gamma \vdash e_{1}: \exists \alpha \cdot \tau_{1} \quad \Delta \cup\{\alpha\}, \Gamma, x: \tau_{1} \vdash e_{2}: \tau_{2} \quad \Delta \vdash \tau_{2} \text { ok }}{\Delta, \Gamma \vdash \text { unpack }\{\alpha, x\}=e_{1} \text { in } e_{2}: \tau_{2}}
$$

The side condition $\Delta \vdash \tau_{2}$ ok ensures that the existentially quantified type variable α does not appear free in τ_{2}.

Example

```
let counterADT \(=\) pack \{int,
\(\{\) new \(=0\), get \(=\lambda i\) int.\(i\), inc \(=\lambda i\) : int \(. i+1\}\}\)
as
\(\exists\) Counter.
\{new: Counter,
get : Counter \(\rightarrow\) int, inc: Counter \(\rightarrow\) Counter \(\}\)
in ...
```


Example

Here's how to use the existential value counterADT:

unpack $\{T, c\}=$ counterADT in
let $y=c$.new in
c.get (c.inc (c.inc $y)$)

Representation Independence

We can define alternate, equivalent implementations of our counter...

```
let counterADT =
    pack \(\{\{x\) :int \(\}\),
    \(\{\) new \(=\{x=0\}\),
get \(=\lambda r:\{x\) :int \(\} . r . x\),
inc \(=\lambda r:\{x: \mathbf{i n t}\} \cdot r \cdot x+1\}\}\)
    as
\(\exists\) Counter.
\{ new : Counter, get : Counter \(\rightarrow\) int, inc: Counter \(\rightarrow\) Counter \(\}\)
``` in ...

\section*{Existentials and Type Variables}

In the typing rule for unpack, the side condition \(\Delta \vdash \tau_{2}\) ok prevents type variables from "leaking out" of unpack expressions.

\section*{Existentials and Type Variables}

In the typing rule for unpack, the side condition \(\Delta \vdash \tau_{2}\) ok prevents type variables from "leaking out" of unpack expressions.

This rules out programs like this:
let \(m=\)
pack \(\{\) int,\(\{a=5, f=\lambda x:\) int. \(x+1\}\}\) as \(\exists \alpha .\{a: \alpha, f: \alpha \rightarrow \alpha\}\)
in
unpack \(\{T, x\}=m\) in \(x . f x . a\)
where the type of \(x . f \times . a\) is just \(T\).

\section*{Encoding Existentials}

We can encode existentials using universals!
The idea is to use a Church encoding where an existential value is a function that takes a type and then calls a continuation.

\section*{Encoding Existentials}

We can encode existentials using universals!
The idea is to use a Church encoding where an existential value is a function that takes a type and then calls a continuation.
\[
\exists \alpha \cdot \tau \triangleq \forall \beta \cdot(\forall \alpha . \tau \rightarrow \beta) \rightarrow \beta
\]
\(\operatorname{pack}\left\{\tau_{1}, e\right\}\) as \(\exists \alpha . \tau_{2} \triangleq \Lambda \beta . \lambda f:\left(\forall \alpha \cdot \tau_{2} \rightarrow \beta\right) . f\left[\tau_{1}\right] e\)
unpack \(\{\alpha, x\}=e_{1}\) in \(e_{2} \triangleq e_{1}\left[\tau_{2}\right]\left(\Lambda \alpha \cdot \lambda x: \tau_{1} \cdot e_{2}\right)\)
where \(e_{1}\) has type \(\exists \alpha . \tau_{1}\) and \(e_{2}\) has type \(\tau_{2}\)```

