CS 4110

Programming Languages \& Logics

Lecture 26
 Recursive Types

Recursive Types

Many languages support data types that refer to themselves:
Java
class Tree \{
Tree leftChild, rightChild;
int data;
\}

Recursive Types

Many languages support data types that refer to themselves:
Java

> class Tree \{

Tree leftChild, rightChild;
int data;
\}

OCaml

$$
\text { type tree }=\text { Leaf | Node of tree } * \text { tree } * \text { int }
$$

Recursive Types

Many languages support data types that refer to themselves:
Java

```
class Tree {
    Tree leftChild, rightChild;
    int data;
}
```

OCaml

$$
\text { type tree }=\text { Leaf | Node of tree } * \text { tree } * \text { int }
$$

λ-calculus?

$$
\text { tree }=\text { unit }+ \text { int } \times \text { tree } \times \text { tree }
$$

Recursive Type Equations

We would like tree to be a solution of the equation:

$$
\alpha=\text { unit }+\mathbf{i n t} \times \alpha \times \alpha
$$

However, no such solution exists with the types we have so far...

Unwinding Equations

We could unwind the equation:

$$
\alpha=\mathbf{u n i t}+\mathbf{i n t} \times \alpha \times \alpha
$$

Unwinding Equations

We could unwind the equation:

$$
\begin{aligned}
\alpha= & \text { unit }+ \text { int } \times \alpha \times \alpha \\
= & \text { unit }+ \text { int } \times \\
& \quad(\text { unit }+ \text { int } \times \alpha \times \alpha) \times \\
& \quad(\text { unit }+ \text { int } \times \alpha \times \alpha)
\end{aligned}
$$

Unwinding Equations

We could unwind the equation:

$$
\begin{aligned}
& \alpha= \text { unit }+ \text { int } \times \alpha \times \alpha \\
&= \text { unit }+ \text { int } \times \\
&(\text { unit }+ \text { int } \times \alpha \times \alpha) \times \\
&(\text { unit }+ \text { int } \times \alpha \times \alpha) \\
&=\text { unit }+ \text { int } \times \\
&(\text { unit }+ \text { int } \times \\
&(\text { unit }+ \text { int } \times \alpha \times \alpha) \times \\
&\quad(\text { unit }+ \text { int } \times \alpha \times \alpha)) \times \\
&(\text { unit }+ \text { int } \times \\
&(\text { unit }+ \text { int } \times \alpha \times \alpha) \times \\
&(\text { unit }+ \text { int } \times \alpha \times \alpha))
\end{aligned}
$$

Unwinding Equations

We could unwind the equation:

$$
\begin{aligned}
& \alpha= \text { unit }+ \text { int } \times \alpha \times \alpha \\
&= \text { unit }+ \text { int } \times \\
& \quad(\text { unit }+ \text { int } \times \alpha \times \alpha) \times \\
&(\text { unit }+ \text { int } \times \alpha \times \alpha) \\
&= \text { unit }+ \text { int } \times \\
& \quad(\text { unit }+ \text { int } \times \\
& \quad(\text { unit }+ \text { int } \times \alpha \times \alpha) \times \\
&\quad(\text { unit }+ \text { int } \times \alpha \times \alpha)) \times \\
& \quad(\text { unit }+ \text { int } \times \\
& \quad(\text { unit }+ \text { int } \times \alpha \times \alpha) \times \\
&\quad(\text { unit }+ \text { int } \times \alpha \times \alpha))
\end{aligned}
$$

$=\cdots$

Unwinding Equations

We could unwind the equation:

$$
\begin{aligned}
& \alpha= \text { unit }+ \text { int } \times \alpha \times \alpha \\
&= \text { unit }+ \text { int } \times \\
& \quad(\text { unit }+ \text { int } \times \alpha \times \alpha) \times \\
&(\text { unit }+ \text { int } \times \alpha \times \alpha) \\
&= \text { unit }+ \text { int } \times \\
& \quad(\text { unit }+ \text { int } \times \\
& \quad(\text { unit }+ \text { int } \times \alpha \times \alpha) \times \\
&\quad(\text { unit }+ \text { int } \times \alpha \times \alpha)) \times \\
& \quad(\text { unit }+ \text { int } \times \\
& \quad(\text { unit }+ \text { int } \times \alpha \times \alpha) \times \\
&\quad(\text { unit }+ \text { int } \times \alpha \times \alpha))
\end{aligned}
$$

$$
=\cdots
$$

If we take the limit of this process, we have an infinite tree.

Infinite Types

Think of this as an infinite labeled graph whose nodes are labeled with the type constructors $\times,+$, int, and unit.

This infinite tree is a solution of our equation, and this is what we take as the type tree.
μ Types

We'll specify potentially-infinite solutions to type equations using a finite syntax based on the fixed-point type constructor μ.

$$
\mu \alpha . \tau
$$

We'll specify potentially-infinite solutions to type equations using a finite syntax based on the fixed-point type constructor μ.

$$
\mu \alpha . \tau
$$

Here's a tree type satisfying our original equation:

$$
\text { tree } \triangleq \mu \alpha . \text { unit }+ \text { int } \times \alpha \times \alpha
$$

Static Semantics (Equirecursive)

We'll define two treatments of recursive types. With equirecursive types, a recursive type is equal to its unfolding: $\mu \alpha . \tau$ is a solution to $\alpha=\tau$, so:

$$
\mu \alpha . \tau=\tau\{\mu \alpha . \tau / \alpha\}
$$

Static Semantics (Equirecursive)

We'll define two treatments of recursive types. With equirecursive types, a recursive type is equal to its unfolding:
$\mu \alpha . \tau$ is a solution to $\alpha=\tau$, so:

$$
\mu \alpha . \tau=\tau\{\mu \alpha . \tau / \alpha\}
$$

Two typing rules let us switch between folded and unfolded:

$$
\begin{aligned}
& \frac{\Gamma \vdash e: \tau\{\mu \alpha \cdot \tau / \alpha\}}{\Gamma \vdash e: \mu \alpha \cdot \tau} \mu \text {-INTRO } \\
& \frac{\Gamma \vdash e: \mu \alpha \cdot \tau}{\Gamma \vdash e: \tau\{\mu \alpha \cdot \tau / \alpha\}} \mu \text {-ELIM }
\end{aligned}
$$

Isorecursive Types

Alternatively, isorecursive types avoid infinite type trees.
The type $\mu \alpha . \tau$ is distinct but transformable to and from $\tau\{\mu \alpha . \tau / \alpha\}$.

Isorecursive Types

Alternatively, isorecursive types avoid infinite type trees.
The type $\mu \alpha . \tau$ is distinct but transformable to and from $\tau\{\mu \alpha . \tau / \alpha\}$.

Converting between the two uses explicit fold and unfold operations:

$$
\begin{aligned}
\text { unfold }_{\mu \alpha . \tau} & : \mu \alpha . \tau \rightarrow \tau\{\mu \alpha . \tau / \alpha\} \\
\text { fold }_{\mu \alpha . \tau} & : \tau\{\mu \alpha . \tau / \alpha\} \rightarrow \mu \alpha . \tau
\end{aligned}
$$

Static Semantics (Isorecursive)

The typing rules introduce and eliminate μ-types:

$$
\frac{\Gamma \vdash e: \tau\{\mu \alpha . \tau / \alpha\}}{\Gamma \vdash \text { fold } e: \mu \alpha . \tau} \mu \text {-INTRO }
$$

$$
\frac{\Gamma \vdash e: \mu \alpha . \tau}{\Gamma \vdash \text { unfold } e: \tau\{\mu \alpha . \tau / \alpha\}} \mu \text {-ELIM }
$$

Dynamic Semantics

We also need to augment the operational semantics:

unfold (fold e) $\rightarrow e$

Intuitively, to access data in a recursive type $\mu \alpha . \tau$, we need to unfold it first. And the only way that values of type $\mu \alpha$. τ could have been created is via fold.

Example

Here's a recursive type for lists of numbers: intlist $\triangleq \mu \alpha$. unit + int $\times \alpha$.

Example

Here's a recursive type for lists of numbers: intlist $\triangleq \mu \alpha$. unit + int $\times \alpha$.

Here's how to add up the elements of an intlist:
let sum $=$
fix $(\lambda f$: intlist \rightarrow intlist
λl : intlist. case unfold ℓ of
(λu : unit. 0)
$\mid(\lambda p:$ int \times intlist. $(\# 1 p)+f(\# 2 p)))$

Encoding Numbers

Recursive types let us encode the natural numbers!

Encoding Numbers

Recursive types let us encode the natural numbers!
A natural number is either 0 or the successor of a natural number:
nat $\triangleq \mu \alpha$. unit $+\alpha$

Encoding Numbers

Recursive types let us encode the natural numbers!
A natural number is either 0 or the successor of a natural number:

$$
\begin{aligned}
\text { nat } & \triangleq \mu \alpha . \text { unit }+\alpha \\
0 & \triangleq \text { fold }\left(\text { inl }_{\text {unit }+ \text { nat }}()\right)
\end{aligned}
$$

Encoding Numbers

Recursive types let us encode the natural numbers!
A natural number is either 0 or the successor of a natural number:

$$
\begin{aligned}
\text { nat } & \triangleq \mu \alpha . \text { unit }+\alpha \\
0 & \triangleq \text { fold }\left(\text { inl }_{\text {unit }+ \text { nat }}()\right) \\
1 & \triangleq \text { fold }\left(\text { inr }_{\text {unit }+ \text { nat }} 0\right) \\
2 & \triangleq \text { fold }\left(\text { inr }_{\text {unit }+ \text { nat }} 1\right) \\
& \vdots
\end{aligned}
$$

Encoding Numbers

Recursive types let us encode the natural numbers!
A natural number is either 0 or the successor of a natural number:

$$
\begin{aligned}
\text { nat } & \triangleq \mu \alpha . \text { unit }+\alpha \\
0 & \triangleq \text { fold }\left(\text { inl }_{\text {unit }+ \text { nat }}()\right) \\
1 & \triangleq \text { fold }\left(\text { inr }_{\text {unit }+ \text { nat }} 0\right) \\
2 & \triangleq \text { fold }\left(\text { inr }_{\text {unit }+ \text { nat }} 1\right) \\
& \vdots
\end{aligned}
$$

The successor function has type nat \rightarrow nat:
$\left(\lambda x:\right.$ nat. fold $\left(\right.$ inr $\left.\left._{\text {unit }+ \text { nat }} x\right)\right)$

Self-Application and Ω

Recall Ω defined as:

$$
\omega \triangleq \lambda x . x x \quad \Omega \triangleq \omega \omega
$$

Ω was impossible to type... until now!

Self-Application and Ω

Recall Ω defined as:

$$
\omega \triangleq \lambda x . x x \quad \Omega \triangleq \omega \omega
$$

Ω was impossible to type... until now!
x is a function. Let's say it has the type $\sigma \rightarrow \tau$.

Self-Application and Ω

Recall Ω defined as:

$$
\omega \triangleq \lambda x . x x \quad \Omega \triangleq \omega \omega
$$

Ω was impossible to type... until now!
x is a function. Let's say it has the type $\sigma \rightarrow \tau$.
x is used as the argument to this function, so it must have type σ.

Self-Application and Ω

Recall Ω defined as:

$$
\omega \triangleq \lambda x \cdot x x \quad \Omega \triangleq \omega \omega
$$

Ω was impossible to type... until now!
x is a function. Let's say it has the type $\sigma \rightarrow \tau$.
x is used as the argument to this function, so it must have type σ.
So let's write a type equation:

$$
\sigma=\sigma \rightarrow \tau
$$

Self-Application and Ω

Putting these pieces together, the fully typed ω term is:

$$
\omega \triangleq \lambda x: \mu \alpha \cdot(\alpha \rightarrow \tau) .(\text { unfold } x) x
$$

Self-Application and Ω

Putting these pieces together, the fully typed ω term is:

$$
\omega \triangleq \lambda x: \mu \alpha \cdot(\alpha \rightarrow \tau) \cdot(\text { unfold } x) x
$$

The type of ω is $(\mu \alpha .(\alpha \rightarrow \tau)) \rightarrow \tau$.
So the type of fold ω is $\mu \alpha .(\alpha \rightarrow \tau)$.

Self-Application and Ω

Putting these pieces together, the fully typed ω term is:

$$
\omega \triangleq \lambda x: \mu \alpha \cdot(\alpha \rightarrow \tau) \cdot(\text { unfold } x) x
$$

The type of ω is $(\mu \alpha .(\alpha \rightarrow \tau)) \rightarrow \tau$.
So the type of fold ω is $\mu \alpha$. $(\alpha \rightarrow \tau)$.
Now we can define $\Omega=\omega$ (fold ω). It has type τ.

Self-Application and Ω

We can even write ω in OCaml:

```
\# type \(u=\) Fold of (u -> \(u\) ); ;
type \(u=\) Fold of (u -> u)
\# let omega \(=\) fun \(x\)-> match \(x\) with Fold \(f\)-> f \(x ;\)
val omega : u -> u = <fun>
\# omega (Fold omega); ;
...runs forever until you hit control-c
```


Encoding λ-Calculus

With recursive types, we can type everything in the untyped lambda calculus!

Encoding λ-Calculus

With recursive types, we can type everything in the untyped lambda calculus!

Every λ-term can be applied as a function to any other λ-term. So let's define an "untyped" type:

$$
U \triangleq \mu \alpha \cdot \alpha \rightarrow \alpha
$$

Encoding λ-Calculus

With recursive types, we can type everything in the untyped lambda calculus!

Every λ-term can be applied as a function to any other λ-term.
So let's define an "untyped" type:

$$
U \triangleq \mu \alpha \cdot \alpha \rightarrow \alpha
$$

The full translation is:

$$
\begin{aligned}
& \llbracket x \rrbracket \triangleq x \\
& \llbracket e_{0} e_{1} \rrbracket \triangleq\left(\text { unfold } \llbracket e_{0} \rrbracket\right) \llbracket e_{1} \rrbracket \\
& \llbracket \lambda x . e \rrbracket \triangleq \text { fold } \lambda x: U . \llbracket e \rrbracket
\end{aligned}
$$

Every untyped term maps to a term of type U.

