

CS 4110

Programming Languages & Logics

Lecture 19
Continuations

Continuations

In the preceding translations, the control structure of the source
language was translated directly into the corresponding control
structure in the target language.

For example:

T [[λx. e]] = λx. T [[e]]
T [[e1 e2]] = T [[e1]] T [[e2]]

What can go wrong with this approach?

2

Continuations

• A snippet of code that represents “the rest of the program”

• Can be used directly by programmers...

• ...or in program transformations by a compiler

• Make the control flow of the program explicit

• Also useful for defining the meaning of features like
exceptions

3

Example

Consider the following expression:

(λx. x) ((3 ∗ (1+ 2))− 4)

If we make all of the continuations explicit, we obtain:

k0 = λv. (λx. x) v

k1 = λa. k0 (a− 4)
k2 = λb. k1 (3 ∗ b)
k3 = λc. k2 (c+ 2)

The original expression is equivalent to k3 1, or:

(λc. (λb. (λa. (λv. (λx. x) v) (a− 4)) (3 ∗ b)) (c+ 2)) 1

4

Example

Consider the following expression:

(λx. x) ((3 ∗ (1+ 2))− 4)

If we make all of the continuations explicit, we obtain:

k0 = λv. (λx. x) v

k1 = λa. k0 (a− 4)
k2 = λb. k1 (3 ∗ b)
k3 = λc. k2 (c+ 2)

The original expression is equivalent to k3 1, or:

(λc. (λb. (λa. (λv. (λx. x) v) (a− 4)) (3 ∗ b)) (c+ 2)) 1

4

Example

Consider the following expression:

(λx. x) ((3 ∗ (1+ 2))− 4)

If we make all of the continuations explicit, we obtain:

k0 = λv. (λx. x) v
k1 = λa. k0 (a− 4)

k2 = λb. k1 (3 ∗ b)
k3 = λc. k2 (c+ 2)

The original expression is equivalent to k3 1, or:

(λc. (λb. (λa. (λv. (λx. x) v) (a− 4)) (3 ∗ b)) (c+ 2)) 1

4

Example

Consider the following expression:

(λx. x) ((3 ∗ (1+ 2))− 4)

If we make all of the continuations explicit, we obtain:

k0 = λv. (λx. x) v
k1 = λa. k0 (a− 4)
k2 = λb. k1 (3 ∗ b)

k3 = λc. k2 (c+ 2)

The original expression is equivalent to k3 1, or:

(λc. (λb. (λa. (λv. (λx. x) v) (a− 4)) (3 ∗ b)) (c+ 2)) 1

4

Example

Consider the following expression:

(λx. x) ((3 ∗ (1+ 2))− 4)

If we make all of the continuations explicit, we obtain:

k0 = λv. (λx. x) v
k1 = λa. k0 (a− 4)
k2 = λb. k1 (3 ∗ b)
k3 = λc. k2 (c+ 2)

The original expression is equivalent to k3 1, or:

(λc. (λb. (λa. (λv. (λx. x) v) (a− 4)) (3 ∗ b)) (c+ 2)) 1

4

Example

Consider the following expression:

(λx. x) ((3 ∗ (1+ 2))− 4)

If we make all of the continuations explicit, we obtain:

k0 = λv. (λx. x) v
k1 = λa. k0 (a− 4)
k2 = λb. k1 (3 ∗ b)
k3 = λc. k2 (c+ 2)

The original expression is equivalent to k3 1, or:

(λc. (λb. (λa. (λv. (λx. x) v) (a− 4)) (3 ∗ b)) (c+ 2)) 1
4

Example (Continued)

Recall that let x = e in e′ is syntactic sugar for (λx. e′) e.

Hence, we can rewrite the expression with continuations more
succinctly as

let c = 1 in
let b = c+ 2 in
let a = 3 ∗ b in
let v = a− 4 in
(λx. x) v

5

CPS Transformation

CPS[[n]] k = k n
CPS[[x]] k = k x

CPS[[succ e]] k = CPS[[e]] (λn. k (succ n))
CPS[[e1 + e2]] k = CPS[[e1]] (λn. CPS[[e2]] (λm. k (n+m)))

CPS[[λx. e]] k = k (λx. λk′. CPS[[e]] k′)
CPS[[e1 e2]] k = CPS[[e1]] (λf. CPS[[e2]] (λv. f v k))

Wewrite CPS[[e]] k = . . . instead of CPS[[e]] = λk. . . .

We assume that the new variables introduced are “fresh.”

6

CPS Transformation

CPS[[n]] k = k n

CPS[[x]] k = k x
CPS[[succ e]] k = CPS[[e]] (λn. k (succ n))
CPS[[e1 + e2]] k = CPS[[e1]] (λn. CPS[[e2]] (λm. k (n+m)))

CPS[[λx. e]] k = k (λx. λk′. CPS[[e]] k′)
CPS[[e1 e2]] k = CPS[[e1]] (λf. CPS[[e2]] (λv. f v k))

Wewrite CPS[[e]] k = . . . instead of CPS[[e]] = λk. . . .

We assume that the new variables introduced are “fresh.”

6

CPS Transformation

CPS[[n]] k = k n
CPS[[x]] k = k x

CPS[[succ e]] k = CPS[[e]] (λn. k (succ n))
CPS[[e1 + e2]] k = CPS[[e1]] (λn. CPS[[e2]] (λm. k (n+m)))

CPS[[λx. e]] k = k (λx. λk′. CPS[[e]] k′)
CPS[[e1 e2]] k = CPS[[e1]] (λf. CPS[[e2]] (λv. f v k))

Wewrite CPS[[e]] k = . . . instead of CPS[[e]] = λk. . . .

We assume that the new variables introduced are “fresh.”

6

CPS Transformation

CPS[[n]] k = k n
CPS[[x]] k = k x

CPS[[succ e]] k = CPS[[e]] (λn. k (succ n))

CPS[[e1 + e2]] k = CPS[[e1]] (λn. CPS[[e2]] (λm. k (n+m)))

CPS[[λx. e]] k = k (λx. λk′. CPS[[e]] k′)
CPS[[e1 e2]] k = CPS[[e1]] (λf. CPS[[e2]] (λv. f v k))

Wewrite CPS[[e]] k = . . . instead of CPS[[e]] = λk. . . .

We assume that the new variables introduced are “fresh.”

6

CPS Transformation

CPS[[n]] k = k n
CPS[[x]] k = k x

CPS[[succ e]] k = CPS[[e]] (λn. k (succ n))
CPS[[e1 + e2]] k = CPS[[e1]] (λn. CPS[[e2]] (λm. k (n+m)))

CPS[[λx. e]] k = k (λx. λk′. CPS[[e]] k′)
CPS[[e1 e2]] k = CPS[[e1]] (λf. CPS[[e2]] (λv. f v k))

Wewrite CPS[[e]] k = . . . instead of CPS[[e]] = λk. . . .

We assume that the new variables introduced are “fresh.”

6

CPS Transformation

CPS[[n]] k = k n
CPS[[x]] k = k x

CPS[[succ e]] k = CPS[[e]] (λn. k (succ n))
CPS[[e1 + e2]] k = CPS[[e1]] (λn. CPS[[e2]] (λm. k (n+m)))

CPS[[λx. e]] k = k (λx. λk′. CPS[[e]] k′)

CPS[[e1 e2]] k = CPS[[e1]] (λf. CPS[[e2]] (λv. f v k))

Wewrite CPS[[e]] k = . . . instead of CPS[[e]] = λk. . . .

We assume that the new variables introduced are “fresh.”

6

CPS Transformation

CPS[[n]] k = k n
CPS[[x]] k = k x

CPS[[succ e]] k = CPS[[e]] (λn. k (succ n))
CPS[[e1 + e2]] k = CPS[[e1]] (λn. CPS[[e2]] (λm. k (n+m)))

CPS[[λx. e]] k = k (λx. λk′. CPS[[e]] k′)
CPS[[e1 e2]] k = CPS[[e1]] (λf. CPS[[e2]] (λv. f v k))

Wewrite CPS[[e]] k = . . . instead of CPS[[e]] = λk. . . .

We assume that the new variables introduced are “fresh.”

6

CPS Transformation, Extended

We can also translate other language features, like products:

e ::= · · · | (e1, e2) | #1 e | #2 e

CPS[[(e1, e2)]] k = CPS[[e1]] (λv. CPS[[e2]] (λw. k (v,w)))
CPS[[#1 e]] k = CPS[[e]] (λv. k (#1 v))
CPS[[#2 e]] k = CPS[[e]] (λv. k (#2 v))

7

CPS Transformation, Extended

We can also translate other language features, like products:

e ::= · · · | (e1, e2) | #1 e | #2 e

CPS[[(e1, e2)]] k = CPS[[e1]] (λv. CPS[[e2]] (λw. k (v,w)))

CPS[[#1 e]] k = CPS[[e]] (λv. k (#1 v))
CPS[[#2 e]] k = CPS[[e]] (λv. k (#2 v))

7

CPS Transformation, Extended

We can also translate other language features, like products:

e ::= · · · | (e1, e2) | #1 e | #2 e

CPS[[(e1, e2)]] k = CPS[[e1]] (λv. CPS[[e2]] (λw. k (v,w)))
CPS[[#1 e]] k = CPS[[e]] (λv. k (#1 v))

CPS[[#2 e]] k = CPS[[e]] (λv. k (#2 v))

7

CPS Transformation, Extended

We can also translate other language features, like products:

e ::= · · · | (e1, e2) | #1 e | #2 e

CPS[[(e1, e2)]] k = CPS[[e1]] (λv. CPS[[e2]] (λw. k (v,w)))
CPS[[#1 e]] k = CPS[[e]] (λv. k (#1 v))
CPS[[#2 e]] k = CPS[[e]] (λv. k (#2 v))

7

