CS 4110

Programming Languages \& Logics

Lecture 19

Continuations

Continuations

In the preceding translations, the control structure of the source language was translated directly into the corresponding control structure in the target language.

For example:

$$
\begin{aligned}
& \mathcal{T} \llbracket \lambda x \cdot e \rrbracket=\lambda x \cdot \mathcal{T} \llbracket e \rrbracket \\
& \mathcal{T} \llbracket e_{1} e_{2} \rrbracket=\mathcal{T} \llbracket e_{1} \rrbracket \mathcal{T} \llbracket e_{2} \rrbracket
\end{aligned}
$$

What can go wrong with this approach?

Continuations

- A snippet of code that represents "the rest of the program"
- Can be used directly by programmers...
- ...or in program transformations by a compiler
- Make the control flow of the program explicit
- Also useful for defining the meaning of features like exceptions

Example

Consider the following expression:

$$
(\lambda x \cdot x)((3 *(1+2))-4)
$$

Example

Consider the following expression:

$$
(\lambda x \cdot x)((3 *(1+2))-4)
$$

If we make all of the continuations explicit, we obtain:

$$
k_{0}=\lambda v \cdot(\lambda x \cdot x) v
$$

Example

Consider the following expression:

$$
(\lambda x \cdot x)((3 *(1+2))-4)
$$

If we make all of the continuations explicit, we obtain:

$$
\begin{aligned}
& k_{0}=\lambda v \cdot(\lambda x \cdot x) v \\
& k_{1}=\lambda a \cdot k_{0}(a-4)
\end{aligned}
$$

Example

Consider the following expression:

$$
(\lambda x \cdot x)((3 *(1+2))-4)
$$

If we make all of the continuations explicit, we obtain:

$$
\begin{aligned}
& k_{0}=\lambda v \cdot(\lambda x \cdot x) v \\
& k_{1}=\lambda a \cdot k_{0}(a-4) \\
& k_{2}=\lambda b \cdot k_{1}(3 * b)
\end{aligned}
$$

Example

Consider the following expression:

$$
(\lambda x \cdot x)((3 *(1+2))-4)
$$

If we make all of the continuations explicit, we obtain:

$$
\begin{aligned}
& k_{0}=\lambda v \cdot(\lambda x \cdot x) v \\
& k_{1}=\lambda a \cdot k_{0}(a-4) \\
& k_{2}=\lambda b \cdot k_{1}(3 * b) \\
& k_{3}=\lambda c \cdot k_{2}(c+2)
\end{aligned}
$$

Example

Consider the following expression:

$$
(\lambda x \cdot x)((3 *(1+2))-4)
$$

If we make all of the continuations explicit, we obtain:

$$
\begin{aligned}
& k_{0}=\lambda v \cdot(\lambda x \cdot x) v \\
& k_{1}=\lambda a \cdot k_{0}(a-4) \\
& k_{2}=\lambda b \cdot k_{1}(3 * b) \\
& k_{3}=\lambda c \cdot k_{2}(c+2)
\end{aligned}
$$

The original expression is equivalent to $k_{3} 1$, or:

$$
(\lambda c \cdot(\lambda b \cdot(\lambda a \cdot(\lambda v \cdot(\lambda x \cdot x) v)(a-4))(3 * b))(c+2)) 1
$$

Example (Continued)

Recall that let $x=e$ in e^{\prime} is syntactic sugar for $\left(\lambda x . e^{\prime}\right) e$.
Hence, we can rewrite the expression with continuations more succinctly as

$$
\begin{aligned}
& \text { let } c=1 \text { in } \\
& \text { let } b=c+2 \text { in } \\
& \text { let } a=3 * b \text { in } \\
& \text { let } v=a-4 \text { in } \\
& (\lambda x . x) v
\end{aligned}
$$

CPS Transformation

We write $\mathcal{C P} \mathcal{S} \llbracket e \rrbracket k=\ldots$ instead of $\mathcal{C P S} \mathbb{S} \llbracket \rrbracket=\lambda k \ldots$
We assume that the new variables introduced are "fresh."

CPS Transformation

$$
\mathcal{C P S} \mathbb{S} \llbracket \rrbracket k=k n
$$

We write $\mathcal{C P} \mathcal{S} \llbracket e \rrbracket k=\ldots$ instead of $\mathcal{C P S} \mathbb{S} \llbracket \rrbracket=\lambda k \ldots$
We assume that the new variables introduced are "fresh."

CPS Transformation

$$
\begin{aligned}
\mathcal{C P S} \llbracket n \rrbracket k & =k n \\
\mathcal{C P S} \llbracket x \rrbracket k & =k x
\end{aligned}
$$

We write $\mathcal{C P} \mathcal{S} \llbracket e \rrbracket k=\ldots$ instead of $\mathcal{C P} \mathcal{S} \llbracket e \rrbracket=\lambda k \ldots$
We assume that the new variables introduced are "fresh."

CPS Transformation

$$
\begin{aligned}
\mathcal{C P} \mathcal{S} \llbracket n \rrbracket k & =k n \\
\mathcal{C P} \mathcal{P} \llbracket x \rrbracket k & =k x \\
\mathcal{C P S} \llbracket \operatorname{succ} e \rrbracket k & =\mathcal{C P} \mathcal{S} \llbracket e \rrbracket(\lambda n . k(\operatorname{succ} n))
\end{aligned}
$$

We write $\mathcal{C} \mathcal{P S} \mathbb{S} \llbracket \rrbracket k=\ldots$ instead of $\mathcal{C} \mathcal{P} \mathcal{S} \llbracket e \rrbracket=\lambda k \ldots$
We assume that the new variables introduced are "fresh."

CPS Transformation

$$
\begin{aligned}
\mathcal{C P S} \llbracket n \rrbracket k & =k n \\
\mathcal{C P} \mathcal{S} \llbracket x \rrbracket k & =k x \\
\mathcal{C P} \mathcal{S} \llbracket \operatorname{succ} e \rrbracket k & =\mathcal{C P} \mathcal{S} \llbracket e \rrbracket(\lambda n . k(\operatorname{succ} n)) \\
\mathcal{C P S} \llbracket e_{1}+e_{2} \rrbracket k & =\mathcal{C P} \mathcal{S} \llbracket e_{1} \rrbracket\left(\lambda n \cdot \mathcal{C P} \mathcal{S} \llbracket e_{2} \rrbracket(\lambda m . k(n+m))\right)
\end{aligned}
$$

We write $\mathcal{C} \mathcal{P S} \mathbb{S} \llbracket e \rrbracket k=\ldots$ instead of $\mathcal{C} \mathcal{P} \mathcal{S} \llbracket e \rrbracket=\lambda k \ldots$
We assume that the new variables introduced are "fresh."

CPS Transformation

$$
\begin{aligned}
\mathcal{C P} \mathcal{S} \llbracket n \rrbracket k & =k n \\
\mathcal{C P} \mathcal{P} \llbracket x \rrbracket k & =k x \\
\mathcal{C P} \mathcal{S} \llbracket \mathrm{succ} e \rrbracket k & =\mathcal{C P} \mathcal{P} \llbracket e \rrbracket(\lambda n . k(\text { succ } n)) \\
\mathcal{C P S} \llbracket e_{1}+e_{2} \rrbracket k & =\mathcal{C} \mathcal{P} \mathcal{S} \llbracket e_{1} \rrbracket\left(\lambda n \cdot \mathcal{C P} \mathcal{S} \llbracket e_{2} \rrbracket(\lambda m . k(n+m))\right) \\
\mathcal{C P S} \llbracket \lambda x . e \rrbracket k & =k\left(\lambda x . \lambda k^{\prime} . \mathcal{C P S} \mathbb{\mathcal { S }} \rrbracket k^{\prime}\right)
\end{aligned}
$$

We write $\mathcal{C} \mathcal{P S} \mathbb{S} \llbracket \rrbracket k=\ldots$ instead of $\mathcal{C} \mathcal{P} \mathcal{S} \llbracket e \rrbracket=\lambda k \ldots$
We assume that the new variables introduced are "fresh."

CPS Transformation

$$
\begin{aligned}
\mathcal{C P S} \mathbb{S} \llbracket n \rrbracket k & =k n \\
\mathcal{C P} \mathcal{S} \llbracket x \rrbracket k & =k x \\
\mathcal{C P} \mathcal{P} \llbracket s u c c e \rrbracket k & =\mathcal{C P} \mathcal{S} \llbracket e \rrbracket(\lambda n . k(\text { succ } n)) \\
\mathcal{C P S} \llbracket e_{1}+e_{2} \rrbracket k & =\mathcal{C P} \mathcal{S} \llbracket e_{1} \rrbracket\left(\lambda n . \mathcal{C P} \mathcal{S} \llbracket e_{2} \rrbracket(\lambda m . k(n+m))\right) \\
\mathcal{C P} \mathcal{S} \llbracket \lambda x . e \rrbracket k & =k\left(\lambda x . \lambda k^{\prime} . \mathcal{C P S} \mathbb{S} \llbracket \rrbracket k^{\prime}\right) \\
\mathcal{C P} \mathcal{S} \llbracket e_{1} e_{2} \rrbracket k & =\mathcal{C P} \mathcal{S} \llbracket e_{1} \rrbracket\left(\lambda f . \mathcal{C P S} \llbracket e_{2} \rrbracket(\lambda v . f v k)\right)
\end{aligned}
$$

We write $\mathcal{C} \mathcal{P S} \mathbb{S} \llbracket \rrbracket k=\ldots$ instead of $\mathcal{C} \mathcal{P} \mathcal{S} \llbracket e \rrbracket=\lambda k \ldots$
We assume that the new variables introduced are "fresh."

CPS Transformation, Extended

We can also translate other language features, like products:

$$
e::=\cdots\left|\left(e_{1}, e_{2}\right)\right| \# 1 e \mid \# 2 e
$$

CPS Transformation, Extended

We can also translate other language features, like products:

$$
e::=\cdots\left|\left(e_{1}, e_{2}\right)\right| \# 1 e \mid \# 2 e
$$

$\mathcal{C P} \mathcal{S} \llbracket\left(e_{1}, e_{2}\right) \rrbracket k=\mathcal{C P} \mathcal{S} \llbracket e_{1} \rrbracket\left(\lambda v . \mathcal{C P} \mathcal{S} \llbracket e_{2} \rrbracket(\lambda w . k(v, w))\right)$

CPS Transformation, Extended

We can also translate other language features, like products:

$$
e::=\cdots\left|\left(e_{1}, e_{2}\right)\right| \# 1 e \mid \# 2 e
$$

$$
\begin{aligned}
\mathcal{C P S} \llbracket\left(e_{1}, e_{2}\right) \rrbracket k & =\mathcal{C P} \mathcal{S} \llbracket e_{1} \rrbracket\left(\lambda v \cdot \mathcal{C P} \mathcal{S} \llbracket e_{2} \rrbracket(\lambda w . k(v, w))\right) \\
\mathcal{C P S} \llbracket \# 1 e \rrbracket k & =\mathcal{C P} \mathcal{S} \llbracket e \rrbracket(\lambda v . k(\# 1 v))
\end{aligned}
$$

CPS Transformation, Extended

We can also translate other language features, like products:

$$
e::=\cdots\left|\left(e_{1}, e_{2}\right)\right| \# 1 e \mid \# 2 e
$$

$$
\begin{aligned}
\mathcal{C P S} \llbracket\left(e_{1}, e_{2}\right) \rrbracket k & =\mathcal{C P S} \llbracket e_{1} \rrbracket\left(\lambda v \cdot \mathcal{C P S} \llbracket e_{2} \rrbracket(\lambda w \cdot k(v, w))\right) \\
\mathcal{C P S} \llbracket \# 1 e \rrbracket k & =\mathcal{C P S} \llbracket \llbracket \rrbracket(\lambda v \cdot k(\# 1 v)) \\
\mathcal{C P S} \llbracket \# 2 \rrbracket \rrbracket k & =\mathcal{C P S} \llbracket e \rrbracket(\lambda v \cdot k(\# 2 v))
\end{aligned}
$$

