CS 4110

Programming Languages & Logics

Lecture 17 De Bruijn, Combinators

de Bruijn Notation

Another way to avoid the tricky issues with substitution is to use a *nameless* representation of terms.

$$e ::= n \mid \lambda . e \mid e e$$

de Bruijn Notation

Another way to avoid the tricky issues with substitution is to use a *nameless* representation of terms.

$$e ::= n \mid \lambda . e \mid e e$$

Abstractions have lost their variables!

Variables are replaced with numerical indices!

Here are some terms written in standard and de Bruijn notation:

Standard	de Bruijn
λx. x	λ. 0
λz. z	

Here are some terms written in standard and de Bruijn notation:

Standard	de Bruijn
λx. x	λ . 0
λz. z	λ . 0
λx . λy . x	

Here are some terms written in standard and de Bruijn notation:

Standard	de Bruijn
$\lambda x. x$	λ. 0
λz. z	λ . 0
$\lambda x. \ \lambda y. \ x$	λ. λ. 1
$\lambda x. \ \lambda y. \ \lambda s. \ \lambda z. \ x s (y s z)$	

Here are some terms written in standard and de Bruijn notation:

Standard	de Bruijn
λx. x	λ. 0
λz . z	λ. 0
λx. λy. x	λ. λ. 1
$\lambda x. \ \lambda y. \ \lambda s. \ \lambda z. \ x s (y s z)$	λ. λ. λ. λ. 31(210)
$(\lambda x. xx) (\lambda x. xx)$	

Here are some terms written in standard and de Bruijn notation:

Standard	de Bruijn
λx. x	λ. 0
λz. z	λ. 0
λx . λy . x	λ. λ. 1
$\lambda x. \ \lambda y. \ \lambda s. \ \lambda z. \ x s (y s z)$	λ. λ. λ. λ. 31(210)
$(\lambda x. xx) (\lambda x. xx)$	$(\lambda. \ 0 \ 0) (\lambda. \ 0 \ 0)$
$(\lambda x. \ \lambda x. \ x) (\lambda y. \ y)$	

Here are some terms written in standard and de Bruijn notation:

Standard	de Bruijn
λ <i>x</i> . <i>x</i>	λ. 0
λz. z	λ. 0
$\lambda x. \ \lambda y. \ x$	λ. λ. 1
$\lambda x. \ \lambda y. \ \lambda s. \ \lambda z. \ x s (y s z)$	λ. λ. λ. λ. 31(210)
$(\lambda x. xx)(\lambda x. xx)$	$(\lambda. \ 0 \ 0) (\lambda. \ 0 \ 0)$
$(\lambda x. \ \lambda x. \ x) (\lambda y. \ y)$	$(\lambda. \ \lambda. \ 0) (\lambda. \ 0)$

Free variables

To represent a λ -expression that contains free variables in de Bruijn notation, we need a way to map the free variables to integers.

We will work with respect to a map Γ from variables to integers called a *context*.

Examples:

Suppose that Γ maps x to 0 and y to 1.

- Representation of x y is 0 1
- Representation of λz . $x y z \lambda$. 120

Shifting

To define substitution, we will need an operation that shifts by *i* the variables above a cutoff *c*:

$$\uparrow_{c}^{i}(n) = \begin{cases} n & \text{if } n < c \\ n+i & \text{otherwise} \end{cases}$$

$$\uparrow_{c}^{i}(\lambda.e) = \lambda.(\uparrow_{c+1}^{i}e)$$

$$\uparrow_{c}^{i}(e_{1}e_{2}) = (\uparrow_{c}^{i}e_{1})(\uparrow_{c}^{i}e_{2})$$

The cutoff *c* keeps track of the variables that were bound in the original expression and so should not be shifted.

The cutoff is 0 initially.

Substitution

Now we can define substitution:

$$\begin{array}{rcl} n\{e/m\} & = & \left\{ \begin{array}{ll} e & \text{if } n = m \\ n & \text{otherwise} \end{array} \right. \\ (\lambda.e_1)\{e/m\} & = & \lambda.e_1\{(\uparrow_0^1 e)/m + 1\} \\ (e_1 \, e_2)\{e/m\} & = & \left(e_1\{e/m\}\right)(e_2\{e/m\}) \end{array}$$

Substitution

Now we can define substitution:

$$\begin{array}{rcl} n\{e/m\} & = & \left\{ \begin{array}{ll} e & \text{if } n = m \\ n & \text{otherwise} \end{array} \right. \\ (\lambda.e_1)\{e/m\} & = & \lambda.e_1\{(\uparrow_0^1 e)/m + 1\} \\ (e_1 \, e_2)\{e/m\} & = & \left(e_1\{e/m\}\right)(e_2\{e/m\}) \end{array}$$

The β rule for terms in de Bruijn notation is just:

$$\overline{(\lambda.e_1)\,e_2\,\rightarrow\,\uparrow_0^{-1}\,\left(e_1\{\uparrow_0^1\,e_2/0\}\right)}\,^\beta$$

Consider the term $(\lambda u.\lambda v.u.x)$ y with respect to a context where $\Gamma(x) = 0$ and $\Gamma(y) = 1$.

Consider the term $(\lambda u.\lambda v.u.x)$ y with respect to a context where $\Gamma(x) = 0$ and $\Gamma(y) = 1$.

 $(\lambda.\lambda.12)1$

Consider the term $(\lambda u.\lambda v.u x) y$ with respect to a context where $\Gamma(x) = 0$ and $\Gamma(y) = 1$.

$$\begin{array}{c} (\lambda.\lambda.1\,2)\,1 \\ \rightarrow \ \uparrow_0^{-1} \left((\lambda.1\,2)\{(\uparrow_0^1\,1)/0\} \right) \end{array}$$

Consider the term $(\lambda u.\lambda v.u x) y$ with respect to a context where $\Gamma(x) = 0$ and $\Gamma(y) = 1$.

$$\begin{array}{c} (\lambda.\lambda.1\,2)\,1 \\ \to & \uparrow_0^{-1} ((\lambda.1\,2)\{(\uparrow_0^1\,1)/0\}) \\ = & \uparrow_0^{-1} ((\lambda.1\,2)\{2/0\}) \end{array}$$

Consider the term $(\lambda u.\lambda v.u.x)$ y with respect to a context where $\Gamma(x) = 0$ and $\Gamma(y) = 1$.

$$\begin{array}{l} (\lambda.\lambda.1\,2)\,1\\ \to & \uparrow_0^{-1}\left((\lambda.1\,2)\{(\uparrow_0^1\,1)/0\}\right)\\ = & \uparrow_0^{-1}\left((\lambda.1\,2)\{2/0\}\right)\\ = & \uparrow_0^{-1}\,\lambda.((1\,2)\{(\uparrow_0^1\,2)/(0+1)\}) \end{array}$$

Consider the term $(\lambda u.\lambda v.u.x)$ y with respect to a context where $\Gamma(x) = 0$ and $\Gamma(y) = 1$.

$$\begin{array}{ll} & \left(\lambda.\lambda.1\,2\right)\,1\\ \to & \uparrow_0^{-1}\left((\lambda.1\,2)\{(\uparrow_0^1\,1)/0\}\right)\\ = & \uparrow_0^{-1}\left((\lambda.1\,2)\{2/0\}\right)\\ = & \uparrow_0^{-1}\,\lambda.((1\,2)\{(\uparrow_0^1\,2)/(0+1)\})\\ = & \uparrow_0^{-1}\,\lambda.((1\,2)\{3/1\}) \end{array}$$

Consider the term $(\lambda u.\lambda v.u.x)$ y with respect to a context where $\Gamma(x) = 0$ and $\Gamma(y) = 1$.

$$\begin{array}{l} (\lambda.\lambda.1\,2)\,1\\ \to & \uparrow_0^{-1}\left((\lambda.1\,2)\{(\uparrow_0^1\,1)/0\}\right)\\ = & \uparrow_0^{-1}\left((\lambda.1\,2)\{2/0\}\right)\\ = & \uparrow_0^{-1}\,\lambda.((1\,2)\{(\uparrow_0^1\,2)/(0+1)\})\\ = & \uparrow_0^{-1}\,\lambda.((1\,2)\{3/1\})\\ = & \uparrow_0^{-1}\,\lambda.(1\{3/1\})\,(2\{3/1\}) \end{array}$$

Consider the term $(\lambda u.\lambda v.u.x)$ y with respect to a context where $\Gamma(x) = 0$ and $\Gamma(y) = 1$.

$$\begin{array}{l} (\lambda.\lambda.1\,2)\,1 \\ \to & \uparrow_0^{-1}\left((\lambda.1\,2)\{(\uparrow_0^1\,1)/0\}\right) \\ = & \uparrow_0^{-1}\left((\lambda.1\,2)\{2/0\}\right) \\ = & \uparrow_0^{-1}\,\lambda.((1\,2)\{(\uparrow_0^1\,2)/(0+1)\}) \\ = & \uparrow_0^{-1}\,\lambda.((1\,2)\{3/1\}) \\ = & \uparrow_0^{-1}\,\lambda.(1\{3/1\})\,(2\{3/1\}) \\ = & \uparrow_0^{-1}\,\lambda.3\,2 \end{array}$$

Consider the term $(\lambda u.\lambda v.u x) y$ with respect to a context where $\Gamma(x) = 0$ and $\Gamma(y) = 1$.

$$\begin{array}{l} (\lambda.\lambda.1\,2)\,1 \\ \to \ \uparrow_0^{-1} \ ((\lambda.1\,2)\{(\uparrow_0^1\,1)/0\}) \\ = \ \uparrow_0^{-1} \ ((\lambda.1\,2)\{2/0\}) \\ = \ \uparrow_0^{-1} \ \lambda.((1\,2)\{(\uparrow_0^1\,2)/(0+1)\}) \\ = \ \uparrow_0^{-1} \ \lambda.((1\,2)\{3/1\}) \\ = \ \uparrow_0^{-1} \ \lambda.(1\{3/1\}) \ (2\{3/1\}) \\ = \ \uparrow_0^{-1} \ \lambda.3\,2 \\ = \ \lambda.2\,1 \end{array}$$

Consider the term $(\lambda u.\lambda v.u.x)$ y with respect to a context where $\Gamma(x) = 0$ and $\Gamma(y) = 1$.

$$\begin{array}{l} (\lambda.\lambda.1\,2)\,1 \\ \to & \uparrow_0^{-1}\left((\lambda.1\,2)\{(\uparrow_0^1\,1)/0\}\right) \\ = & \uparrow_0^{-1}\left((\lambda.1\,2)\{2/0\}\right) \\ = & \uparrow_0^{-1}\,\lambda.((1\,2)\{(\uparrow_0^1\,2)/(0+1)\}) \\ = & \uparrow_0^{-1}\,\lambda.((1\,2)\{3/1\}) \\ = & \uparrow_0^{-1}\,\lambda.(1\{3/1\})\,(2\{3/1\}) \\ = & \uparrow_0^{-1}\,\lambda.3\,2 \\ = & \lambda.2\,1 \end{array}$$

which, in standard notation (with respect to Γ), is the same as $\lambda v.yx$.

Combinators

Another way to avoid the issues having to do with free and bound variable names in the λ -calculus is to work with closed expressions or *combinators*.

With just three combinators, we can encode the entire λ -calculus.

Combinators

Another way to avoid the issues having to do with free and bound variable names in the λ -calculus is to work with closed expressions or *combinators*.

With just three combinators, we can encode the entire λ -calculus.

$$K = \lambda x. \lambda y. x$$

$$S = \lambda x. \lambda y. \lambda z. x z (y z)$$

$$I = \lambda x. x$$

Combinators

We can even define independent evaluation rules that don't depend on the λ -calculus at all.

Behold the "SKI-calculus":

$$egin{aligned} \mathsf{K}\,e_1\,e_2 &
ightarrow e_1 \ \mathsf{S}\,e_1\,e_2\,e_3 &
ightarrow e_1\,e_3\,(e_2\,e_3) \ \mathsf{I}\,e &
ightarrow e \end{aligned}$$

You would never want to program in this language—it doesn't even have variables!—but it's exactly as powerful as the λ -calculus.

S

Bracket Abstraction

The function [x] that takes a combinator term M and builds another term that behaves like $\lambda x.M$:

The idea is that $([x] M) N \rightarrow M\{N/x\}$ for every term N.

Bracket Abstraction

We then define a function (e)* that maps a λ -calculus expression to a combinator term:

$$(x)* = x$$

 $(e_1 e_2)* = (e_1)* (e_2)*$
 $(\lambda x.e)* = [x] (e)*$

As an example, the expression $\lambda x. \lambda y. x$ is translated as follows:

$$(\lambda x. \lambda y. x)*$$

= $[x] (\lambda y. x)*$
= $[x] ([y] x)$
= $[x] (K x)$
= $(S ([x] K) ([x] x))$
= $S (K K) I$

No variables in the final combinator term!

We can check that this behaves the same as our original λ -expression by seeing how it evaluates when applied to arbitrary expressions e_1 and e_2 .

$$(\lambda x.\lambda y. x) e_1 e_2$$

$$\rightarrow (\lambda y. e_1) e_2$$

$$\rightarrow e_1$$

We can check that this behaves the same as our original λ -expression by seeing how it evaluates when applied to arbitrary expressions e_1 and e_2 .

$$\begin{array}{cc} & (\lambda x.\lambda y.\,x)\,e_1\,e_2 \\ \rightarrow & (\lambda y.\,e_1)\,e_2 \\ \rightarrow & e_1 \end{array}$$

and

$$\begin{array}{c} \left(\text{S}\left(\text{K}\,\text{K}\right)\text{I}\right)e_{1}\,e_{2} \\ \rightarrow \left(\text{K}\,\text{K}\,e_{1}\right)\left(\text{I}\,e_{1}\right)e_{2} \\ \rightarrow \left(\text{K}\,e_{1}\,e_{2}\right. \\ \rightarrow \left.\text{E}_{1}\,e_{1}\right. \end{array}$$

SKI Without I

Looking back at our definitions...

$$egin{aligned} \mathsf{K}\,e_1\,e_2 &
ightarrow e_1 \ \mathsf{S}\,e_1\,e_2\,e_3 &
ightarrow e_1\,e_3\,(e_2\,e_3) \ \mathsf{I}\,e &
ightarrow e \end{aligned}$$

... I isn't strictly necessary. It behaves the same as S K K.

SKI Without I

Looking back at our definitions...

$$egin{aligned} \mathsf{K}\,e_1\,e_2 &
ightarrow e_1 \ \mathsf{S}\,e_1\,e_2\,e_3 &
ightarrow e_1\,e_3\,(e_2\,e_3) \ \mathsf{I}\,e &
ightarrow e \end{aligned}$$

... I isn't strictly necessary. It behaves the same as S K K.

Our example becomes:

SKI Without SKI?

You can go one step farther!

$$\iota \triangleq \lambda f. \, f \, S \, K$$

= $\lambda f. \, f \, (\lambda a. \, \lambda b. \, \lambda c. \, ((a \, c) \, (b \, c))) \, \lambda d. \, \lambda e. \, d$

SKI Without SKI?

You can go one step farther!

$$\iota \triangleq \lambda f. \, f \, S \, K$$

= $\lambda f. \, f \, (\lambda a. \, \lambda b. \, \lambda c. \, ((a \, c) \, (b \, c))) \, \lambda d. \, \lambda e. \, d$

So:

$$S \equiv_{\beta} \iota (\iota (\iota (\iota \iota)))$$

$$K \equiv_{\beta} \iota (\iota (\iota \iota))$$

$$I \equiv_{\beta} \iota \iota$$

A single combinator suffices!