CS 4110

Programming Languages \& Logics

Lecture 17
De Bruijn, Combinators

de Bruijn Notation

Another way to avoid the tricky issues with substitution is to use a nameless representation of terms.

$$
e::=n|\lambda . e| e e
$$

de Bruijn Notation

Another way to avoid the tricky issues with substitution is to use a nameless representation of terms.

$$
e::=n|\lambda . e| e e
$$

Abstractions have lost their variables!

Variables are replaced with numerical indices!

Examples

Here are some terms written in standard and de Bruijn notation:

Standard
$\lambda x . x$
$\lambda z . z$
de Bruijn
$\lambda .0$

Examples

Here are some terms written in standard and de Bruijn notation:

Standard
$\lambda x . x$
$\lambda z . z$
$\lambda x . \lambda y . x$
de Bruijn

入. 0
入. 0

Examples

Here are some terms written in standard and de Bruijn notation:

Standard
$\lambda x . x$
$\lambda z . z$
入. 0
$\lambda x . \lambda y . x$
$\lambda . \lambda .1$
$\lambda x . \lambda y . \lambda s . \lambda z . x s(y s z)$ de Bruijn
入. 0

Examples

Here are some terms written in standard and de Bruijn notation:

```
Standard
\(\lambda x . x\)
\(\lambda .0\)
\(\lambda z . z\)
\(\lambda .0\)
\(\lambda x . \lambda y . x \quad \lambda . \lambda .1\)
\(\lambda x \cdot \lambda y . \lambda s . \lambda z \cdot x s(y s z) \quad \lambda \cdot \lambda \cdot \lambda \cdot \lambda .31\) (210)
\((\lambda x . x x)(\lambda x . x x)\)
```


Examples

Here are some terms written in standard and de Bruijn notation:

Standard

$\lambda x . x$
$\lambda z . z$
$\lambda .0$
$\lambda x . \lambda y . x$
$\lambda . \lambda .1$
$\lambda x . \lambda y . \lambda s . \lambda z . x s(y s z) \quad \lambda . \lambda . \lambda . \lambda .31(210)$
$(\lambda x . x x)(\lambda x . x x)$
$(\lambda .00)(\lambda .00)$
$(\lambda x . \lambda x . x)(\lambda y . y)$

Examples

Here are some terms written in standard and de Bruijn notation:

Standard

$\lambda x . x$
$\lambda z . z$
$\lambda x . \lambda y . x$
$\lambda x . \lambda y \cdot \lambda s . \lambda z \cdot x s(y s z) \quad \lambda \cdot \lambda \cdot \lambda \cdot \lambda .31$ (210)
$(\lambda x . x x)(\lambda x . x x)$
$(\lambda x . \lambda x \cdot x)(\lambda y \cdot y)$
$\lambda .0$
$\lambda .0$
$\lambda . \lambda .1$
($\lambda .00$) ($\lambda .00$) de Bruijn
($\lambda . \lambda .0)(\lambda .0)$

Free variables

To represent a λ-expression that contains free variables in de Bruijn notation, we need a way to map the free variables to integers.

We will work with respect to a map Γ from variables to integers called a context.

Examples:

Suppose that Γ maps x to 0 and y to 1 .

- Representation of $x y$ is 01
- Representation of $\lambda z . x y z \lambda .120$

Shifting

To define substitution, we will need an operation that shifts by i the variables above a cutoff c :

$$
\begin{aligned}
\uparrow_{c}^{i}(n) & = \begin{cases}n & \text { if } n<c \\
n+i & \text { otherwise }\end{cases} \\
\uparrow_{c}^{i}(\lambda . e) & =\lambda .\left(\uparrow_{c+1}^{i} e\right) \\
\uparrow_{c}^{i}\left(e_{1} e_{2}\right) & =\left(\uparrow_{c}^{i} e_{1}\right)\left(\uparrow_{c}^{i} e_{2}\right)
\end{aligned}
$$

The cutoff c keeps track of the variables that were bound in the original expression and so should not be shifted.

The cutoff is 0 initially.

Substitution

Now we can define substitution:

$$
\begin{aligned}
n\{e / m\} & = \begin{cases}e & \text { if } n=m \\
n & \text { otherwise }\end{cases} \\
\left(\lambda . e_{1}\right)\{e / m\} & =\lambda . e_{1}\left\{\left(\uparrow_{0}^{1} e\right) / m+1\right\} \\
\left(e_{1} e_{2}\right)\{e / m\} & =\left(e_{1}\{e / m\}\right)\left(e_{2}\{e / m\}\right)
\end{aligned}
$$

Substitution

Now we can define substitution:

$$
\begin{aligned}
n\{e / m\} & = \begin{cases}e & \text { if } n=m \\
n & \text { otherwise }\end{cases} \\
\left(\lambda . e_{1}\right)\{e / m\} & =\lambda . e_{1}\left\{\left(\uparrow_{0}^{1} e\right) / m+1\right\} \\
\left(e_{1} e_{2}\right)\{e / m\} & =\left(e_{1}\{e / m\}\right)\left(e_{2}\{e / m\}\right)
\end{aligned}
$$

The β rule for terms in de Bruijn notation is just:

$$
\overline{\left(\lambda . e_{1}\right) e_{2} \rightarrow \uparrow_{0}^{-1}\left(e_{1}\left\{\uparrow_{0}^{1} e_{2} / 0\right\}\right)} \beta
$$

Example

Consider the term $(\lambda u . \lambda v . u x) y$ with respect to a context where $\Gamma(x)=0$ and $\Gamma(y)=1$.

Example

Consider the term $(\lambda u . \lambda v . u x) y$ with respect to a context where $\Gamma(x)=0$ and $\Gamma(y)=1$.

$$
(\lambda . \lambda .12) 1
$$

Example

Consider the term ($\lambda u . \lambda v . u x) y$ with respect to a context where $\Gamma(x)=0$ and $\Gamma(y)=1$.

$$
\begin{aligned}
& (\lambda . \lambda .12) 1 \\
\rightarrow & \uparrow_{0}^{-1}\left((\lambda .12)\left\{\left(\uparrow_{0}^{1} 1\right) / 0\right\}\right)
\end{aligned}
$$

Example

Consider the term ($\lambda u . \lambda v . u x) y$ with respect to a context where $\Gamma(x)=0$ and $\Gamma(y)=1$.

$$
\begin{aligned}
& (\lambda . \lambda .12) 1 \\
\rightarrow & \uparrow_{0}^{-1}\left((\lambda .12)\left\{\left(\uparrow_{0}^{1} 1\right) / 0\right\}\right) \\
= & \uparrow_{0}^{-1}((\lambda .12)\{2 / 0\})
\end{aligned}
$$

Example

Consider the term ($\lambda u . \lambda v . u x) y$ with respect to a context where $\Gamma(x)=0$ and $\Gamma(y)=1$.

$$
\begin{aligned}
& (\lambda . \lambda .12) 1 \\
\rightarrow & \uparrow_{0}^{-1}\left((\lambda .12)\left\{\left(\uparrow_{0}^{1} 1\right) / 0\right\}\right) \\
= & \uparrow_{0}^{-1}((\lambda .12)\{2 / 0\}) \\
= & \uparrow_{0}^{-1} \lambda \cdot\left((12)\left\{\left(\uparrow_{0}^{1} 2\right) /(0+1)\right\}\right)
\end{aligned}
$$

Example

Consider the term ($\lambda u . \lambda v . u x) y$ with respect to a context where $\Gamma(x)=0$ and $\Gamma(y)=1$.

$$
\begin{aligned}
& (\lambda . \lambda .12) 1 \\
\rightarrow & \uparrow_{0}^{-1}\left((\lambda .12)\left\{\left(\uparrow_{0}^{1} 1\right) / 0\right\}\right) \\
= & \uparrow_{0}^{-1}((\lambda .12)\{2 / 0\}) \\
= & \uparrow_{0}^{-1} \lambda \cdot\left((12)\left\{\left(\uparrow_{0}^{1} 2\right) /(0+1)\right\}\right) \\
= & \uparrow_{0}^{-1} \lambda .((12)\{3 / 1\})
\end{aligned}
$$

Example

Consider the term ($\lambda u . \lambda v . u x) y$ with respect to a context where $\Gamma(x)=0$ and $\Gamma(y)=1$.

$$
\begin{aligned}
& (\lambda . \lambda .12) 1 \\
\rightarrow & \uparrow_{0}^{-1}\left((\lambda .12)\left\{\left(\uparrow_{0}^{1} 1\right) / 0\right\}\right) \\
= & \uparrow_{0}^{-1}((\lambda .12)\{2 / 0\}) \\
= & \uparrow_{0}^{-1} \lambda .\left((12)\left\{\left(\uparrow_{0}^{1} 2\right) /(0+1)\right\}\right) \\
= & \uparrow_{0}^{-1} \lambda .((12)\{3 / 1\}) \\
= & \uparrow_{0}^{-1} \lambda .(1\{3 / 1\})(2\{3 / 1\})
\end{aligned}
$$

Example

Consider the term ($\lambda u . \lambda v . u x) y$ with respect to a context where $\Gamma(x)=0$ and $\Gamma(y)=1$.

$$
\begin{aligned}
& (\lambda . \lambda .12) 1 \\
\rightarrow & \uparrow_{0}^{-1}\left((\lambda .12)\left\{\left(\uparrow_{0}^{1} 1\right) / 0\right\}\right) \\
= & \uparrow_{0}^{-1}((\lambda .12)\{2 / 0\}) \\
= & \uparrow_{0}^{-1} \lambda .\left((12)\left\{\left(\uparrow_{0}^{1} 2\right) /(0+1)\right\}\right) \\
= & \uparrow_{0}^{-1} \lambda .((12)\{3 / 1\}) \\
= & \uparrow_{0}^{-1} \lambda .(1\{3 / 1\})(2\{3 / 1\}) \\
= & \uparrow_{0}^{-1} \lambda .32
\end{aligned}
$$

Example

Consider the term ($\lambda u . \lambda v . u x) y$ with respect to a context where $\Gamma(x)=0$ and $\Gamma(y)=1$.

$$
\begin{aligned}
& (\lambda . \lambda .12) 1 \\
\rightarrow & \uparrow_{0}^{-1}\left((\lambda .12)\left\{\left(\uparrow_{0}^{1} 1\right) / 0\right\}\right) \\
= & \uparrow_{0}^{-1}((\lambda .12)\{2 / 0\}) \\
= & \uparrow_{0}^{-1} \lambda .\left((12)\left\{\left(\uparrow_{0}^{1} 2\right) /(0+1)\right\}\right) \\
= & \uparrow_{0}^{-1} \lambda .((12)\{3 / 1\}) \\
= & \uparrow_{0}^{-1} \lambda .(1\{3 / 1\})(2\{3 / 1\}) \\
= & \uparrow_{0}^{-1} \lambda .32 \\
= & \lambda .21
\end{aligned}
$$

Example

Consider the term ($\lambda u . \lambda v . u x) y$ with respect to a context where $\Gamma(x)=0$ and $\Gamma(y)=1$.

$$
\begin{aligned}
& (\lambda . \lambda .12) 1 \\
\rightarrow & \uparrow_{0}^{-1}\left((\lambda .12)\left\{\left(\uparrow_{0}^{1} 1\right) / 0\right\}\right) \\
= & \uparrow_{0}^{-1}((\lambda .12)\{2 / 0\}) \\
= & \uparrow_{0}^{-1} \lambda .\left((12)\left\{\left(\uparrow_{0}^{1} 2\right) /(0+1)\right\}\right) \\
= & \uparrow_{0}^{-1} \lambda .((12)\{3 / 1\}) \\
= & \uparrow_{0}^{-1} \lambda .(1\{3 / 1\})(2\{3 / 1\}) \\
= & \uparrow_{0}^{-1} \lambda .32 \\
= & \lambda .21
\end{aligned}
$$

which, in standard notation (with respect to Γ), is the same as $\lambda v . y x$.

Combinators

Another way to avoid the issues having to do with free and bound variable names in the λ-calculus is to work with closed expressions or combinators.

With just three combinators, we can encode the entire λ-calculus.

Combinators

Another way to avoid the issues having to do with free and bound variable names in the λ-calculus is to work with closed expressions or combinators.

With just three combinators, we can encode the entire λ-calculus.

$$
\begin{aligned}
& \mathrm{K}=\lambda x \cdot \lambda y \cdot x \\
& \mathrm{~S}=\lambda x \cdot \lambda y \cdot \lambda z \cdot x z(y z) \\
& \mathrm{I}=\lambda x \cdot x
\end{aligned}
$$

Combinators

We can even define independent evaluation rules that don't depend on the λ-calculus at all.

Behold the "SKI-calculus":

$$
\begin{aligned}
& \mathrm{K} e_{1} e_{2} \rightarrow e_{1} \\
& \mathrm{~S} e_{1} e_{2} e_{3} \rightarrow e_{1} e_{3}\left(e_{2} e_{3}\right) \\
& \mathrm{I} e \rightarrow e
\end{aligned}
$$

You would never want to program in this language-it doesn't even have variables!-but it's exactly as powerful as the λ-calculus.

Bracket Abstraction

The function $[x]$ that takes a combinator term M and builds another term that behaves like $\lambda x . M$:

$$
\begin{aligned}
{[x] x } & =\mathrm{l} \\
{[x] N } & =\mathrm{K} N \\
{[x] N_{1} N_{2} } & =\mathrm{S}\left([x] N_{1}\right)\left([x] N_{2}\right)
\end{aligned} \quad \text { where } x \notin f v(N)
$$

The idea is that $([x] M) N \rightarrow M\{N / x\}$ for every term N.

Bracket Abstraction

We then define a function (e)* that maps a λ-calculus expression to a combinator term:

$$
\begin{aligned}
(x) * & =x \\
\left(e_{1} e_{2}\right) * & =\left(e_{1}\right) *\left(e_{2}\right) * \\
(\lambda x . e) * & =[x](e) *
\end{aligned}
$$

Example

As an example, the expression $\lambda x . \lambda y . x$ is translated as follows:

$$
\begin{aligned}
& (\lambda x \cdot \lambda y \cdot x) * \\
= & {[x](\lambda y \cdot x) * } \\
= & {[x]([y] x) } \\
= & {[x](\mathrm{K} x) } \\
= & (\mathrm{S}([x] \mathrm{K})([x] x)) \\
= & \mathrm{S}(\mathrm{~K} \mathrm{~K}) \mathrm{l}
\end{aligned}
$$

No variables in the final combinator term!

Example

We can check that this behaves the same as our original λ-expression by seeing how it evaluates when applied to arbitrary expressions e_{1} and e_{2}.

$$
\begin{aligned}
& (\lambda x \cdot \lambda y \cdot x) e_{1} e_{2} \\
\rightarrow & \left(\lambda y \cdot e_{1}\right) e_{2} \\
\rightarrow & e_{1}
\end{aligned}
$$

Example

We can check that this behaves the same as our original λ-expression by seeing how it evaluates when applied to arbitrary expressions e_{1} and e_{2}.

$$
\begin{aligned}
& (\lambda x \cdot \lambda y \cdot x) e_{1} e_{2} \\
\rightarrow & \left(\lambda y \cdot e_{1}\right) e_{2} \\
\rightarrow & e_{1}
\end{aligned}
$$

and

$$
\begin{aligned}
& (\mathrm{S}(\mathrm{KK}) \mathrm{I}) e_{1} e_{2} \\
\rightarrow & \left(\mathrm{KKe} e_{1}\right)\left(\mathrm{I} e_{1}\right) e_{2} \\
\rightarrow & \mathrm{~K} e_{1} e_{2} \\
\rightarrow & e_{1}
\end{aligned}
$$

SKI Without I

Looking back at our definitions...

$$
\begin{aligned}
& \mathrm{Ke}_{1} e_{2} \rightarrow e_{1} \\
& \mathrm{~S} e_{1} e_{2} e_{3} \rightarrow e_{1} e_{3}\left(e_{2} e_{3}\right) \\
& \operatorname{le} \rightarrow e
\end{aligned}
$$

... I isn't strictly necessary. It behaves the same as S K K.

SKI Without I

Looking back at our definitions...

$$
\begin{aligned}
& \mathrm{Ke}_{1} e_{2} \rightarrow e_{1} \\
& \mathrm{~S} e_{1} e_{2} e_{3} \rightarrow e_{1} e_{3}\left(e_{2} e_{3}\right) \\
& \operatorname{le} \rightarrow e
\end{aligned}
$$

... I isn't strictly necessary. It behaves the same as S K K.
Our example becomes:

$$
S(K K)(S K K)
$$

SKI Without SKI?

You can go one step farther!

$$
\begin{aligned}
\iota & \triangleq \lambda f . f S K \\
& =\lambda f . f(\lambda a . \lambda b . \lambda c .((a c)(b c))) \lambda d . \lambda e . d
\end{aligned}
$$

SKI Without SKI?

You can go one step farther!

$$
\begin{aligned}
\iota & \triangleq \lambda f . f S K \\
& =\lambda f . f(\lambda a . \lambda b . \lambda c .((a c)(b c))) \lambda d . \lambda e . d
\end{aligned}
$$

So:

$$
\begin{aligned}
S & \equiv_{\beta} \iota(\iota(\iota(\iota \iota))) \\
K & \equiv_{\beta} \iota(\iota(\iota \iota)) \\
I & \equiv_{\beta} \iota \iota
\end{aligned}
$$

A single combinator suffices!

