CS 4110

Programming Languages \& Logics

Lecture 16

Fixed-Point Combinators

Termination in the λ-calculus

We have encoded lots of useful programming functionality that produces values.

Does every closed λ-term eventually terminate under CBN evaluation?
\forall closed term e. $\exists e^{\prime} . e \rightarrow^{*} e^{\prime} \wedge e^{\prime} \nrightarrow$?

Termination in the λ-calculus

We have encoded lots of useful programming functionality that produces values.

Does every closed λ-term eventually terminate under CBN evaluation?

$$
\forall \text { closed term e. } \exists e^{\prime} . e \rightarrow^{*} e^{\prime} \wedge e^{\prime} \nrightarrow \text { ? }
$$

No!

$$
\Omega \triangleq(\lambda x \cdot x x)(\lambda x \cdot x x)
$$

Termination in the λ-calculus

We have encoded lots of useful programming functionality that produces values.

Does every closed λ-term eventually terminate under CBN evaluation?

$$
\forall \text { closed term e. } \exists e^{\prime} . e \rightarrow^{*} e^{\prime} \wedge e^{\prime} \nrightarrow \text { ? }
$$

No!

$$
\begin{aligned}
\Omega & \triangleq(\lambda x \cdot x x)(\lambda x \cdot x x) \\
& \rightarrow(x x)\{(\lambda x \cdot x x) / x\} \\
& =(\lambda x \cdot x x)(\lambda x \cdot x x) \\
& =\Omega
\end{aligned}
$$

Recursive Functions

How would we write recursive functions, like factorial?

Recursive Functions

How would we write recursive functions, like factorial?
We'd like to write it like this...
FACT $\triangleq \lambda n . \operatorname{IF}($ ISZERO $n) 1($ TIMES $n($ FACT $($ PRED $n)))$

Recursive Functions

How would we write recursive functions, like factorial?
We'd like to write it like this...

$$
\text { FACT } \triangleq \lambda n . \operatorname{IF}(\text { ISZERO } n) 1(\text { TIMES } n(\text { FACT }(\text { PRED } n)))
$$

In slightly more readable notation this is...

$$
\mathrm{FACT} \triangleq \lambda n \text {. if } n=0 \text { then } 1 \text { else } n \times \text { FACT }(n-1)
$$

...but this is an equation, not a definition!

Recursion removal trick

We can perform a "trick" to define a function FACT that satisfies the recursive equation on the previous slide.

Recursion removal trick

We can perform a "trick" to define a function FACT that satisfies the recursive equation on the previous slide.

Define a new function FACT^{\prime} that takes a function f as an argument. Then, for "recursive" calls, it uses f f:

$$
\mathrm{FACT}^{\prime} \triangleq \lambda f . \lambda n . \text { if } n=0 \text { then } 1 \text { else } n \times((f f)(n-1))
$$

Recursion removal trick

We can perform a "trick" to define a function FACT that satisfies the recursive equation on the previous slide.

Define a new function FACT' $^{\prime}$ that takes a function f as an argument. Then, for "recursive" calls, it uses f f:

$$
\mathrm{FACT}^{\prime} \triangleq \lambda f . \lambda n \text {. if } n=0 \text { then } 1 \text { else } n \times((f f)(n-1))
$$

Then define FACT as FACT' applied to itself:

$$
\mathrm{FACT} \triangleq \mathrm{FACT}^{\prime} \mathrm{FACT}^{\prime}
$$

Example

Let's try evaluating FACT on 3...
FACT 3

Example

Let's try evaluating FACT on 3...
FACT $3=\left(\right.$ FACT $\left.^{\prime} \mathrm{FACT}^{\prime}\right) 3$

Example

Let's try evaluating FACT on 3...
$\mathrm{FACT} 3=\left(\mathrm{FACT}^{\prime} \mathrm{FACT}^{\prime}\right) 3$
$=\left((\lambda f . \lambda n\right.$. if $n=0$ then 1 else $\left.n \times((f f)(n-1))) \mathrm{FACT}^{\prime}\right) 3$

Example

Let's try evaluating FACT on 3...
$\mathrm{FACT} 3=\left(\mathrm{FACT}^{\prime} \mathrm{FACT}^{\prime}\right) 3$
$=\left((\lambda f\right.$. λn. if $n=0$ then 1 else $\left.n \times((f f)(n-1))) \mathrm{FACT}^{\prime}\right) 3$
$\rightarrow\left(\lambda n\right.$. if $n=0$ then 1 else $\left.n \times\left(\left(\mathrm{FACT}^{\prime} \mathrm{FACT}^{\prime}\right)(n-1)\right)\right) 3$

Example

Let's try evaluating FACT on 3...
$\mathrm{FACT} 3=\left(\mathrm{FACT}^{\prime} \mathrm{FACT}^{\prime}\right) 3$
$=\left((\lambda f\right.$. λn. if $n=0$ then 1 else $\left.n \times((f f)(n-1))) \mathrm{FACT}^{\prime}\right) 3$
$\rightarrow\left(\lambda n\right.$. if $n=0$ then 1 else $\left.n \times\left(\left(\mathrm{FACT}^{\prime} \mathrm{FACT}^{\prime}\right)(n-1)\right)\right) 3$
\rightarrow if $3=0$ then 1 else $3 \times\left(\left(\mathrm{FACT}^{\prime} \mathrm{FACT}^{\prime}\right)(3-1)\right)$

Example

Let's try evaluating FACT on 3...
$\mathrm{FACT} 3=\left(\mathrm{FACT}^{\prime} \mathrm{FACT}^{\prime}\right) 3$
$=\left((\lambda f\right.$. λn. if $n=0$ then 1 else $\left.n \times((f f)(n-1))) \mathrm{FACT}^{\prime}\right) 3$
$\rightarrow\left(\lambda n\right.$. if $n=0$ then 1 else $\left.n \times\left(\left(\mathrm{FACT}^{\prime} \mathrm{FACT}^{\prime}\right)(n-1)\right)\right) 3$
\rightarrow if $3=0$ then 1 else $3 \times\left(\left(\mathrm{FACT}^{\prime} \mathrm{FACT}^{\prime}\right)(3-1)\right)$
$\rightarrow 3 \times\left(\left(\mathrm{FACT}^{\prime} \mathrm{FACT}^{\prime}\right)(3-1)\right)$

Example

Let's try evaluating FACT on 3...
$\mathrm{FACT} 3=\left(\mathrm{FACT}^{\prime} \mathrm{FACT}^{\prime}\right) 3$
$=\left((\lambda f\right.$. λn. if $n=0$ then 1 else $\left.n \times((f f)(n-1))) \mathrm{FACT}^{\prime}\right) 3$
$\rightarrow\left(\lambda n\right.$. if $n=0$ then 1 else $\left.n \times\left(\left(\mathrm{FACT}^{\prime} \mathrm{FACT}^{\prime}\right)(n-1)\right)\right) 3$
\rightarrow if $3=0$ then 1 else $3 \times\left(\left(\mathrm{FACT}^{\prime} \mathrm{FACT}^{\prime}\right)(3-1)\right)$
$\rightarrow 3 \times\left(\left(\mathrm{FACT}^{\prime} \mathrm{FACT}^{\prime}\right)(3-1)\right)$
$=3 \times(\operatorname{FACT}(3-1))$

Example

Let's try evaluating FACT on 3...
$\mathrm{FACT} 3=\left(\mathrm{FACT}^{\prime} \mathrm{FACT}^{\prime}\right) 3$
$=\left((\lambda f\right.$. λn. if $n=0$ then 1 else $\left.n \times((f f)(n-1))) \mathrm{FACT}^{\prime}\right) 3$
$\rightarrow\left(\lambda n\right.$. if $n=0$ then 1 else $\left.n \times\left(\left(\mathrm{FACT}^{\prime} \mathrm{FACT}^{\prime}\right)(n-1)\right)\right) 3$
\rightarrow if $3=0$ then 1 else $3 \times\left(\left(\mathrm{FACT}^{\prime} \mathrm{FACT}^{\prime}\right)(3-1)\right)$
$\rightarrow 3 \times\left(\left(\mathrm{FACT}^{\prime} \mathrm{FACT}^{\prime}\right)(3-1)\right)$
$=3 \times(\operatorname{FACT}(3-1))$
\rightarrow...
$\rightarrow 3 \times 2 \times 1 \times 1$

Example

Let's try evaluating FACT on 3...
$\mathrm{FACT} 3=\left(\mathrm{FACT}^{\prime} \mathrm{FACT}^{\prime}\right) 3$
$=\left((\lambda f . \lambda n\right.$. if $n=0$ then 1 else $\left.n \times((f f)(n-1))) \mathrm{FACT}^{\prime}\right) 3$
$\rightarrow\left(\lambda n\right.$. if $n=0$ then 1 else $\left.n \times\left(\left(\mathrm{FACT}^{\prime} \mathrm{FACT}^{\prime}\right)(n-1)\right)\right) 3$
\rightarrow if $3=0$ then 1 else $3 \times\left(\left(\mathrm{FACT}^{\prime} \mathrm{FACT}^{\prime}\right)(3-1)\right)$
$\rightarrow 3 \times\left(\left(\mathrm{FACT}^{\prime} \mathrm{FACT}^{\prime}\right)(3-1)\right)$
$=3 \times(\operatorname{FACT}(3-1))$
\rightarrow...
$\rightarrow 3 \times 2 \times 1 \times 1$
$\rightarrow{ }^{*} 6$

Fixed point combinators

Our "trick" requires following human-readable instructions. Write a different function f that takes itself as an argument and uses self-application for recursive calls, and then define f as $f^{\prime} f^{\prime}$.

Fixed point combinators

Our "trick" requires following human-readable instructions. Write a different function f that takes itself as an argument and uses self-application for recursive calls, and then define f as $f^{\prime} f^{\prime}$.

There is another way: fixed points!

Fixed point combinators

Our "trick" requires following human-readable instructions. Write a different function f that takes itself as an argument and uses self-application for recursive calls, and then define f as $f^{\prime} f^{\prime}$.

There is another way: fixed points!
Consider factorial again. It is a fixed point of the following:

$$
G \triangleq \lambda f . \lambda n \text {. if } n=0 \text { then } 1 \text { else } n \times(f(n-1))
$$

Fixed point combinators

Our "trick" requires following human-readable instructions. Write a different function f that takes itself as an argument and uses self-application for recursive calls, and then define f as $f^{\prime} f^{\prime}$.

There is another way: fixed points!
Consider factorial again. It is a fixed point of the following:

$$
G \triangleq \lambda f . \lambda n \text {. if } n=0 \text { then } 1 \text { else } n \times(f(n-1))
$$

Recall that if g is a fixed point of G, then $G g=g$. To see that any fixed point g is a real factorial function, try evaluating it:

$$
g 5=(G g) 5
$$

Fixed point combinators

Our "trick" requires following human-readable instructions. Write a different function f that takes itself as an argument and uses self-application for recursive calls, and then define f as $f^{\prime} f^{\prime}$.

There is another way: fixed points!
Consider factorial again. It is a fixed point of the following:

$$
G \triangleq \lambda f . \lambda n \text {. if } n=0 \text { then } 1 \text { else } n \times(f(n-1))
$$

Recall that if g is a fixed point of G, then $G g=g$. To see that any fixed point g is a real factorial function, try evaluating it:

$$
\begin{aligned}
g 5 & =(G g) 5 \\
& \rightarrow^{*} 5 \times(g 4)
\end{aligned}
$$

Fixed point combinators

Our "trick" requires following human-readable instructions. Write a different function f that takes itself as an argument and uses self-application for recursive calls, and then define f as $f^{\prime} f^{\prime}$.

There is another way: fixed points!
Consider factorial again. It is a fixed point of the following:

$$
G \triangleq \lambda f . \lambda n \text {. if } n=0 \text { then } 1 \text { else } n \times(f(n-1))
$$

Recall that if g is a fixed point of G, then $G g=g$. To see that any fixed point g is a real factorial function, try evaluating it:

$$
\begin{aligned}
g 5 & =(G g) 5 \\
& \rightarrow * 5 \times(g 4) \\
& =5 \times((G g) 4)
\end{aligned}
$$

Fixed point combinators

How can we generate the fixed point of G ?
In denotational semantics, finding fixed points took a lot of math. In the λ-calculus, we just need a suitable combinator...

Y Combinator

The (infamous) Y combinator is defined as

$$
Y \triangleq \lambda f .(\lambda x \cdot f(x x))(\lambda x \cdot f(x x))
$$

We say that Y is a fixed point combinator because $Y f$ is a fixed point of f (for any λ-term f).

Y Combinator

The (infamous) Y combinator is defined as

$$
Y \triangleq \lambda f .(\lambda x \cdot f(x x))(\lambda x \cdot f(x x))
$$

We say that Y is a fixed point combinator because $Y f$ is a fixed point of f (for any λ-term f).

What happens when we evaluate $Y G$ under CBV?

Z Combinator

To avoid this issue, we'll use a slight variant of the Y combinator, called Z, which is easier to use under CBV.

Z Combinator

To avoid this issue, we'll use a slight variant of the Y combinator, called Z, which is easier to use under CBV.

$$
Z \triangleq \lambda f \cdot(\lambda x \cdot f(\lambda y \cdot x x y))(\lambda x \cdot f(\lambda y \cdot x x y))
$$

Example

Let's see Z in action, on our function G.
FACT

Example

Let's see Z in action, on our function G.

FACT
$=Z G$

Example

Let's see Z in action, on our function G.

$$
\begin{aligned}
& \text { FACT } \\
= & \mathrm{Z} \text { G } \\
= & (\lambda f \cdot(\lambda x \cdot f(\lambda y \cdot x x y))(\lambda x \cdot f(\lambda y \cdot x x y))) G
\end{aligned}
$$

Example

Let's see Z in action, on our function G.

$$
\begin{aligned}
& \text { FACT } \\
= & \mathrm{Z} G \\
= & (\lambda f \cdot(\lambda x \cdot f(\lambda y \cdot x x y))(\lambda x \cdot f(\lambda y \cdot x x y))) G \\
\rightarrow & (\lambda x \cdot G(\lambda y \cdot x x y))(\lambda x \cdot G(\lambda y \cdot x x y))
\end{aligned}
$$

Example

Let's see Z in action, on our function G.

$$
\begin{aligned}
& \text { FACT } \\
= & \text { Z G } \\
= & (\lambda f \cdot(\lambda x \cdot f(\lambda y \cdot x x y))(\lambda x \cdot f(\lambda y \cdot x x y))) G \\
\rightarrow & (\lambda x \cdot G(\lambda y \cdot x x y))(\lambda x \cdot G(\lambda y \cdot x x y)) \\
\rightarrow & G(\lambda y \cdot(\lambda x \cdot G(\lambda y \cdot x x y))(\lambda x \cdot G(\lambda y \cdot x x y)) y)
\end{aligned}
$$

Example

Let's see Z in action, on our function G.

$$
\begin{aligned}
& \text { FACT } \\
= & \mathrm{Z} G \\
= & (\lambda f \cdot(\lambda x \cdot f(\lambda y \cdot x x y))(\lambda x \cdot f(\lambda y \cdot x x y))) G \\
\rightarrow & (\lambda x \cdot G(\lambda y \cdot x x y))(\lambda x \cdot G(\lambda y \cdot x x y)) \\
\rightarrow & G(\lambda y \cdot(\lambda x \cdot G(\lambda y \cdot x x y))(\lambda x \cdot G(\lambda y \cdot x x y)) y) \\
= & (\lambda f \cdot \lambda n \cdot \text { if } n=0 \text { then } 1 \text { else } n \times(f(n-1))) \\
& \quad(\lambda y \cdot(\lambda x \cdot G(\lambda y \cdot x x y))(\lambda x \cdot G(\lambda y \cdot x x y)) y)
\end{aligned}
$$

Example

Let's see Z in action, on our function G.

```
    FACT
    = ZG
    = (\lambdaf.(\lambdax.f(\lambday.xxy))(\lambdax.f(\lambday.xxy)))G
    ->(\lambdax.G(\lambday.xxy))(\lambdax.G(\lambday.xxy))
    ->G(\lambday.(\lambdax.G(\lambday.xxy))(\lambdax.G(\lambday.xxy))y)
    = (\lambdaf. \lambdan. if }n=0\mathrm{ then 1 else }n\times(f(n-1))
                            (\lambday.(\lambdax.G(\lambday.xxy))(\lambdax.G(\lambday.xxy)) y)
 \lambdan. if }n=0\mathrm{ then 1
        elsen }n\times((\lambday\cdot(\lambdax.G(\lambday\cdotxxy))(\lambdax.G(\lambday\cdotxxy))y)(n-1)
```


Example

Let's see Z in action, on our function G.

$$
\begin{aligned}
& \text { FACT } \\
= & Z G \\
= & (\lambda f \cdot(\lambda x \cdot f(\lambda y \cdot x x y))(\lambda x \cdot f(\lambda y \cdot x x y))) G \\
\rightarrow & (\lambda x \cdot G(\lambda y \cdot x x y))(\lambda x \cdot G(\lambda y \cdot x x y)) \\
\rightarrow & G(\lambda y \cdot(\lambda x \cdot G(\lambda y \cdot x x y))(\lambda x \cdot G(\lambda y \cdot x x y)) y) \\
= & (\lambda f \cdot \lambda n \cdot \text { if } n=0 \text { then } 1 \text { else } n \times(f(n-1))) \\
& \quad(\lambda y \cdot(\lambda x \cdot G(\lambda y \cdot x x y))(\lambda x \cdot G(\lambda y \cdot x x y)) y) \\
\rightarrow & \lambda n \cdot \text { if } n=0 \text { then } 1 \\
& \quad \text { else } n \times((\lambda y \cdot(\lambda x \cdot G(\lambda y \cdot x x y))(\lambda x \cdot G(\lambda y \cdot x x y)) y)(n-1)) \\
= & \lambda n \cdot \text { if } n=0 \text { then } 1 \text { else } n \times(\lambda y \cdot(Z G) y)(n-1)
\end{aligned}
$$

Example

Let's see Z in action, on our function G.

$$
\begin{aligned}
& \text { FACT } \\
= & Z G \\
= & (\lambda f \cdot(\lambda x \cdot f(\lambda y \cdot x x y))(\lambda x \cdot f(\lambda y \cdot x x y))) G \\
\rightarrow & (\lambda x \cdot G(\lambda y \cdot x x y))(\lambda x \cdot G(\lambda y \cdot x x y)) \\
\rightarrow & G(\lambda y \cdot(\lambda x \cdot G(\lambda y \cdot x \times y))(\lambda x \cdot G(\lambda y \cdot x x y)) y) \\
= & (\lambda f \cdot \lambda n \cdot \text { if } n=0 \text { then } 1 \text { else } n \times(f(n-1))) \\
& \quad(\lambda y \cdot(\lambda x \cdot G(\lambda y \cdot x x y))(\lambda x \cdot G(\lambda y \cdot x x y)) y) \\
& \lambda n \cdot \text { if } n=0 \text { then } 1 \\
& \quad \text { else } n \times((\lambda y \cdot(\lambda x \cdot G(\lambda y \cdot x x y))(\lambda x \cdot G(\lambda y \cdot x x y)) y)(n-1)) \\
= & \lambda n \cdot \text { if } n=0 \text { then } 1 \text { else } n \times(\lambda y \cdot(Z G) y)(n-1) \\
= & \lambda n \cdot \text { if } n=0 \text { then } 1 \text { else } n \times((Z G)(n-1))
\end{aligned}
$$

Example

Let's see Z in action, on our function G.

```
    FACT
    = ZG
    = (\lambdaf.(\lambdax.f(\lambday.xxy))(\lambdax.f(\lambday.xxy)))G
    ->(\lambdax.G(\lambday.xxy))(\lambdax.G(\lambday.xxy))
    ->G(\lambday.(\lambdax.G(\lambday.xxy))(\lambdax.G(\lambday.xxy)) y)
    = (\lambdaf. \lambdan. if n=0 then 1 else }n\times(f(n-1))
        (\lambday.(\lambdax.G(\lambday.xxy))(\lambdax.G(\lambday.xxy)) y)
\lambdan. if }n=0\mathrm{ then 1
        else }n\times((\lambday\cdot(\lambdax.G(\lambday\cdotxxy))(\lambdax.G(\lambday\cdotxxy))y)(n-1)
= }\mp@subsup{\beta}{}{\prime}\quad\lambdan.\mathrm{ if }n=0\mathrm{ then 1 else }n\times(\lambday.(ZG)y)(n-1
= 
    = \lambdan. if }n=0\mathrm{ then 1 else }n\times(\operatorname{FACT}(n-1)
```


Other fixed point combinators

There are many (indeed infinitely many) fixed-point combinators. Here's a cute one:
where
$\mathrm{L} \triangleq \lambda a b c d e f g h i j k l m n o p q s t u v w x y z r$. (r(thisisafixedpointcombinator))

Turing's Fixed Point Combinator

To gain some more intuition for fixed point combinators, let's derive a combinator Θ originally discovered by Turing.

Turing's Fixed Point Combinator

To gain some more intuition for fixed point combinators, let's derive a combinator Θ originally discovered by Turing.

We know that Θf is a fixed point of f, so we have

$$
\Theta f=f(\Theta f)
$$

Turing's Fixed Point Combinator

To gain some more intuition for fixed point combinators, let's derive a combinator Θ originally discovered by Turing.

We know that Θf is a fixed point of f, so we have

$$
\Theta f=f(\Theta f)
$$

We can write the following recursive equation:

$$
\Theta=\lambda f . f(\Theta f)
$$

Turing's Fixed Point Combinator

To gain some more intuition for fixed point combinators, let's derive a combinator Θ originally discovered by Turing.

We know that Θf is a fixed point of f, so we have

$$
\Theta f=f(\Theta f)
$$

We can write the following recursive equation:

$$
\Theta=\lambda f . f(\Theta f)
$$

Now use the recursion removal trick:

$$
\begin{aligned}
\Theta^{\prime} & \triangleq \lambda t \cdot \lambda f \cdot f(t t f) \\
\Theta & \triangleq \Theta^{\prime} \Theta^{\prime}
\end{aligned}
$$

θ Example

$\mathrm{FACT}=\Theta G$

θ Example

$\mathrm{FACT}=\Theta G$

$$
=((\lambda t . \lambda f . f(t t f))(\lambda t . \lambda f . f(t t f))) G
$$

θ Example

$\mathrm{FACT}=\Theta G$

$$
\begin{aligned}
& =((\lambda t . \lambda f . f(t t f))(\lambda t . \lambda f . f(t t f))) G \\
& \rightarrow(\lambda f . f((\lambda t . \lambda f . f(t t f))(\lambda t . \lambda f . f(t t f)) f)) G
\end{aligned}
$$

θ Example

$\mathrm{FACT}=\Theta G$

$$
\begin{aligned}
& =((\lambda t . \lambda f . f(t t f))(\lambda t . \lambda f . f(t t f))) G \\
& \rightarrow(\lambda f . f((\lambda t . \lambda f . f(t t f))(\lambda t . \lambda f . f(t t f)) f)) G \\
& \rightarrow G((\lambda t . \lambda f . f(t t f))(\lambda t . \lambda f . f(t t f)) G)
\end{aligned}
$$

θ Example

$\mathrm{FACT}=\Theta G$

$$
\begin{aligned}
& =((\lambda t . \lambda f . f(t t f))(\lambda t . \lambda f . f(t t f))) G \\
& \rightarrow(\lambda f . f((\lambda t . \lambda f . f(t t f))(\lambda t . \lambda f . f(t t f)) f)) G \\
& \rightarrow G((\lambda t . \lambda f . f(t t f))(\lambda t . \lambda f . f(t t f)) G) \\
& =G(\Theta G)
\end{aligned}
$$

θ Example

$\mathrm{FACT}=\Theta G$

$$
\begin{aligned}
& =((\lambda t . \lambda f . f(t t f))(\lambda t . \lambda f . f(t t f))) G \\
& \rightarrow(\lambda f . f((\lambda t . \lambda f . f(t t f))(\lambda t . \lambda f . f(t t f)) f)) G \\
& \rightarrow G((\lambda t . \lambda f . f(t t f))(\lambda t . \lambda f . f(t t f)) G) \\
& =G(\Theta G) \\
& =(\lambda f . \lambda n . \text { if } n=0 \text { then } 1 \text { else } n \times(f(n-1)))(\Theta G) \\
& \rightarrow \lambda n \text {. if } n=0 \text { then } 1 \text { else } n \times((\Theta G)(n-1)) \\
& =\lambda n . \text { if } n=0 \text { then } 1 \text { else } n \times(\text { FACT }(n-1))
\end{aligned}
$$

