CS4110

Programming Languages & Logics

Lecture 15
Encodings



Encodings

The pure A-calculus contains only functions as values. It is not
exactly easy to write large or interesting programs in the pure
A-calculus. We can however encode objects, such as booleans,
and integers.



Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and
other operators that behave as follows:

AND TRUE FALSE = FALSE
NOT FALSE = TRUE
IFTRUEe; e; = €
IF FALSEe; e, = €,

w



Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and
other operators that behave as follows:

AND TRUE FALSE = FALSE
NOT FALSE = TRUE
IFTRUEe; e; = €
IF FALSEe; e, = €,

Let’s start by defining TRUE and FALSE:

[I>

TRUE
FALSE £

w



Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and
other operators that behave as follows:

AND TRUE FALSE = FALSE
NOT FALSE = TRUE
IFTRUEe; e; = €
IF FALSEe; e, = €,

Let’s start by defining TRUE and FALSE:

TRUE £ \x. \y. x
FALSE £ \x. \y.y

w



Booleans

We want the function IF to behave like

Ab. At. M. if bis our term TRUE then t, otherwise f



Booleans

We want the function IF to behave like
Ab. At. M. if bis our term TRUE then t, otherwise f
We can rely on the way we defined TRUE and FALSE:

IF2 M. AN btS



Booleans

We want the function IF to behave like
Ab. At. M. if bis our term TRUE then t, otherwise f
We can rely on the way we defined TRUE and FALSE:
IF £ Ab. A A.bEF
We can also write the standard Boolean operators.

NOT £
AND =
OR £



Booleans

We want the function IF to behave like
Ab. At. M. if bis our term TRUE then t, otherwise f
We can rely on the way we defined TRUE and FALSE:
IF £ Ab. A A.bEF
We can also write the standard Boolean operators.

NOT £ \b. b FALSE TRUE
AND £ \b;. \b,. by b, FALSE
OR £ \b;. \b,. b; TRUE b,



Church Numerals

Let’s encode the natural numbers!

We’ll write n for the encoding of the number n. The central
function we’ll need is a successor operation:

SUCCn=n+1

(6]



Church Numerals

Church numerals encode a number n as a function that takes f
and x, and applies fto x n times.

M. X x
M. x. fx
M. f(Fx)

N | Ol
(> > >



Church Numerals

Church numerals encode a number n as a function that takes f
and x, and applies fto x n times.

M. X x
M. x. fx
M. f(Fx)

N | Ol
(> > >

We can write a successor function that “inserts” another
application of f:

SUCC £ An. M. \x. f(nfx)



Addition

Given the definition of SUCC, we can define addition. Intuitively,
the natural number n; + n, is the result of applying the
successor function n; times to n,.

PLUS £



Addition

Given the definition of SUCC, we can define addition. Intuitively,
the natural number n; + n, is the result of applying the
successor function n; times to n,.

PLUS £ \n;. An,.n; SUCC n,



Church Numerals

We can define more functions on integers:

SUcCC
PLUS

A
A

An A x. f(nfx)
Any. Any.n; SUCC n,



Church Numerals

We can define more functions on integers:

SUCC £ An M. f(nfx)
PLUS 2 An;. Any.n; SUCCn,
TIMES £ An;. Any.n; (PLUSN,) 0



Church Numerals

We can define more functions on integers:

SUcCC
PLUS
TIMES
ISZERO

> f1> > 11>

An A x f(n fx)

An;i. Any.n; SUCC n,
Any. Any.ny (PLUS ny) 0
An. n (\z. FALSE) TRUE



