CS 4110

Programming Languages \& Logics

Lecture 15
Encodings

Encodings

The pure λ-calculus contains only functions as values. It is not exactly easy to write large or interesting programs in the pure λ-calculus. We can however encode objects, such as booleans, and integers.

Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and other operators that behave as follows:

AND TRUE FALSE $=$ FALSE
NOT FALSE $=$ TRUE
IF TRUE $e_{1} e_{2}=e_{1}$
IF FALSE $e_{1} e_{2}=e_{2}$

Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and other operators that behave as follows:

$$
\begin{aligned}
\text { AND TRUE FALSE } & =\text { FALSE } \\
\text { NOT FALSE } & =\text { TRUE } \\
\text { IF TRUE } e_{1} e_{2} & =e_{1} \\
\text { IF FALSE } e_{1} e_{2} & =e_{2}
\end{aligned}
$$

Let's start by defining TRUE and FALSE:
TRUE \triangleq
FALSE \triangleq

Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and other operators that behave as follows:

$$
\begin{aligned}
\text { AND TRUE FALSE } & =\text { FALSE } \\
\text { NOT FALSE } & =\text { TRUE } \\
\text { IF TRUE } e_{1} e_{2} & =e_{1} \\
\text { IF FALSE } e_{1} e_{2} & =e_{2}
\end{aligned}
$$

Let's start by defining TRUE and FALSE:

$$
\begin{aligned}
\mathrm{TRUE} & \triangleq \lambda x \cdot \lambda y \cdot x \\
\mathrm{FALSE} & \triangleq \lambda x \cdot \lambda y \cdot y
\end{aligned}
$$

Booleans

We want the function IF to behave like
$\lambda b . \lambda t$. λf. if b is our term TRUE then t, otherwise f

Booleans

We want the function IF to behave like
$\lambda b . \lambda t$. λf. if b is our term TRUE then t, otherwise f
We can rely on the way we defined TRUE and FALSE:

$$
\mathrm{IF} \triangleq \lambda b . \lambda t . \lambda f . b t f
$$

Booleans

We want the function IF to behave like
$\lambda b . \lambda t$. λf. if b is our term TRUE then t, otherwise f
We can rely on the way we defined TRUE and FALSE:

$$
\mathrm{IF} \triangleq \lambda b . \lambda t . \lambda f . b t f
$$

We can also write the standard Boolean operators.

$$
\begin{gathered}
\mathrm{NOT} \triangleq \\
\mathrm{AND} \triangleq \\
\mathrm{OR} \triangleq
\end{gathered}
$$

Booleans

We want the function IF to behave like
$\lambda b . \lambda t$. λf. if b is our term TRUE then t, otherwise f
We can rely on the way we defined TRUE and FALSE:

$$
\mathrm{IF} \triangleq \lambda b . \lambda t . \lambda f . b t f
$$

We can also write the standard Boolean operators.

$$
\begin{aligned}
& \mathrm{NOT} \triangleq \lambda b \cdot b \text { FALSE TRUE } \\
& \mathrm{AND} \triangleq \lambda b_{1} \cdot \lambda b_{2} \cdot b_{1} b_{2} \text { FALSE } \\
& \mathrm{OR} \triangleq \lambda b_{1} \cdot \lambda b_{2} \cdot b_{1} \text { TRUE } b_{2}
\end{aligned}
$$

Church Numerals

Let's encode the natural numbers!
We'll write \bar{n} for the encoding of the number n. The central function we'll need is a successor operation:

$$
\operatorname{SUCC} \bar{n}=\overline{n+1}
$$

Church Numerals

Church numerals encode a number n as a function that takes f and x, and applies f to $x n$ times.

$$
\begin{aligned}
& \overline{0} \triangleq \lambda f . \lambda x \cdot x \\
& \overline{1} \triangleq \lambda f . \lambda x \cdot f x \\
& \overline{2} \triangleq \lambda f . \lambda x \cdot f(f x)
\end{aligned}
$$

Church Numerals

Church numerals encode a number n as a function that takes f and x, and applies f to $x n$ times.

$$
\begin{aligned}
& \overline{0} \triangleq \lambda f . \lambda x \cdot x \\
& \overline{1} \triangleq \lambda f . \lambda x \cdot f x \\
& \overline{2} \triangleq \lambda f . \lambda x \cdot f(f x)
\end{aligned}
$$

We can write a successor function that "inserts" another application of f :
$\operatorname{SUCC} \triangleq \lambda n \cdot \lambda f . \lambda x . f(n f x)$

Addition

Given the definition of SUCC, we can define addition. Intuitively, the natural number $n_{1}+n_{2}$ is the result of applying the successor function n_{1} times to n_{2}.

$$
\text { PLUS } \triangleq
$$

Addition

Given the definition of SUCC, we can define addition. Intuitively, the natural number $n_{1}+n_{2}$ is the result of applying the successor function n_{1} times to n_{2}.

$$
\text { PLUS } \triangleq \lambda n_{1} \cdot \lambda n_{2} \cdot n_{1} \operatorname{SUCC} n_{2}
$$

Church Numerals

We can define more functions on integers:

$$
\begin{aligned}
& \text { SUCC } \triangleq \lambda n \cdot \lambda f \cdot \lambda x \cdot f(n f x) \\
& \text { PLUS } \triangleq \lambda n_{1} \cdot \lambda n_{2} \cdot n_{1} \operatorname{SUCC} n_{2}
\end{aligned}
$$

Church Numerals

We can define more functions on integers:

$$
\begin{aligned}
\mathrm{SUCC} & \triangleq \lambda n \cdot \lambda f \cdot \lambda x \cdot f(n f x) \\
\mathrm{PLUS} & \triangleq \lambda n_{1} \cdot \lambda n_{2} \cdot n_{1} \text { SUCC } n_{2} \\
\text { TIMES } & \triangleq \lambda n_{1} \cdot \lambda n_{2} \cdot n_{1}\left(\text { PLUS } \mathrm{n}_{2}\right) \overline{0}
\end{aligned}
$$

Church Numerals

We can define more functions on integers:

$$
\begin{aligned}
\text { SUCC } & \triangleq \lambda n \cdot \lambda f \cdot \lambda x \cdot f(n f x) \\
\text { PLUS } & \triangleq \lambda n_{1} \cdot \lambda n_{2} \cdot n_{1} \text { SUCC } n_{2} \\
\text { TIMES } & \triangleq \lambda n_{1} \cdot \lambda n_{2} \cdot n_{1}\left(\text { PLUS } n_{2}\right) \overline{0} \\
\text { ISZERO } & \triangleq \lambda n \cdot n(\lambda z \cdot \text { FALSE }) \text { TRUE }
\end{aligned}
$$

