
 

CS 4110

Programming Languages & Logics

Lecture 15
Encodings



Encodings

The pure λ‑calculus contains only functions as values. It is not
exactly easy to write large or interesting programs in the pure
λ‑calculus. We can however encode objects, such as booleans,
and integers.

2



Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and
other operators that behave as follows:

AND TRUE FALSE = FALSE
NOT FALSE = TRUE

IF TRUE e1 e2 = e1
IF FALSE e1 e2 = e2

Let’s start by defining TRUE and FALSE:

TRUE ≜

λx. λy. x

FALSE ≜

λx. λy. y

3



Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and
other operators that behave as follows:

AND TRUE FALSE = FALSE
NOT FALSE = TRUE

IF TRUE e1 e2 = e1
IF FALSE e1 e2 = e2

Let’s start by defining TRUE and FALSE:

TRUE ≜

λx. λy. x

FALSE ≜

λx. λy. y

3



Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and
other operators that behave as follows:

AND TRUE FALSE = FALSE
NOT FALSE = TRUE

IF TRUE e1 e2 = e1
IF FALSE e1 e2 = e2

Let’s start by defining TRUE and FALSE:

TRUE ≜ λx. λy. x

FALSE ≜ λx. λy. y

3



Booleans

Wewant the function IF to behave like

λb. λt. λf. if b is our term TRUE then t, otherwise f

We can rely on the way we defined TRUE and FALSE:

IF ≜ λb. λt. λf. b t f

We can also write the standard Boolean operators.

NOT ≜

λb. b FALSE TRUE

AND ≜

λb1. λb2. b1 b2 FALSE

OR ≜

λb1. λb2. b1 TRUE b2

4



Booleans

Wewant the function IF to behave like

λb. λt. λf. if b is our term TRUE then t, otherwise f

We can rely on the way we defined TRUE and FALSE:

IF ≜ λb. λt. λf. b t f

We can also write the standard Boolean operators.

NOT ≜

λb. b FALSE TRUE

AND ≜

λb1. λb2. b1 b2 FALSE

OR ≜

λb1. λb2. b1 TRUE b2

4



Booleans

Wewant the function IF to behave like

λb. λt. λf. if b is our term TRUE then t, otherwise f

We can rely on the way we defined TRUE and FALSE:

IF ≜ λb. λt. λf. b t f

We can also write the standard Boolean operators.

NOT ≜

λb. b FALSE TRUE

AND ≜

λb1. λb2. b1 b2 FALSE

OR ≜

λb1. λb2. b1 TRUE b2

4



Booleans

Wewant the function IF to behave like

λb. λt. λf. if b is our term TRUE then t, otherwise f

We can rely on the way we defined TRUE and FALSE:

IF ≜ λb. λt. λf. b t f

We can also write the standard Boolean operators.

NOT ≜ λb. b FALSE TRUE

AND ≜ λb1. λb2. b1 b2 FALSE

OR ≜ λb1. λb2. b1 TRUE b2

4



Church Numerals

Let’s encode the natural numbers!

We’ll write n for the encoding of the number n. The central
function we’ll need is a successor operation:

SUCC n = n+ 1

5



Church Numerals

Church numerals encode a number n as a function that takes f
and x, and applies f to x n times.

0 ≜ λf. λx. x
1 ≜ λf. λx. f x
2 ≜ λf. λx. f (f x)

We can write a successor function that “inserts” another
application of f:

SUCC ≜ λn. λf. λx. f (n f x)

6



Church Numerals

Church numerals encode a number n as a function that takes f
and x, and applies f to x n times.

0 ≜ λf. λx. x
1 ≜ λf. λx. f x
2 ≜ λf. λx. f (f x)

We can write a successor function that “inserts” another
application of f:

SUCC ≜ λn. λf. λx. f (n f x)

6



Addition

Given the definition of SUCC, we can define addition. Intuitively,
the natural number n1 + n2 is the result of applying the
successor function n1 times to n2.

PLUS ≜

λn1. λn2. n1 SUCC n2

7



Addition

Given the definition of SUCC, we can define addition. Intuitively,
the natural number n1 + n2 is the result of applying the
successor function n1 times to n2.

PLUS ≜ λn1. λn2. n1 SUCC n2

7



Church Numerals

We can define more functions on integers:

SUCC ≜ λn. λf. λx. f (n f x)
PLUS ≜ λn1. λn2. n1 SUCC n2

TIMES ≜ λn1. λn2. n1 (PLUS n2) 0
ISZERO ≜ λn. n (λz. FALSE) TRUE

8



Church Numerals

We can define more functions on integers:

SUCC ≜ λn. λf. λx. f (n f x)
PLUS ≜ λn1. λn2. n1 SUCC n2
TIMES ≜ λn1. λn2. n1 (PLUS n2) 0

ISZERO ≜ λn. n (λz. FALSE) TRUE

8



Church Numerals

We can define more functions on integers:

SUCC ≜ λn. λf. λx. f (n f x)
PLUS ≜ λn1. λn2. n1 SUCC n2
TIMES ≜ λn1. λn2. n1 (PLUS n2) 0

ISZERO ≜ λn. n (λz. FALSE) TRUE

8


