
CS 4110 – Programming Languages and Logics
Lecture #28: Existential Types

1 Modules

Simple languages, such as C and FORTRAN, often have a single global namespace. This causes
problems in large programs due to name collisions—i.e., two different programmers (or pieces
of code) using the same name for different purposes—are likely. In addition, it often leads to
situationswheremultiple components of a programaremore tightly coupled, since one component
may use a name defined by the other.

Modular programming addresses these issues. A module is a collection of named entities that are
related to each other in some way. Modules provide separate namespaces: different modules have
different name spaces, and so can freely use names without worrying about name collisions.

Typically, a module can choose what names and entities to export (i.e., which names to allow to
be used outside of the module), and what to keep hidden. The exported entities are declared in an
interface, and the interface typically does not export details of the implementation. This means that
different modules can implement the same interface in different ways. Also, by hiding the details
of module implementation, and preventing access to these details except through the exported
interface, programmers of modules can be confident that code invariants are not broken.

Packages in Java are a form of modules. A package provides a separate namespace (we can
have a class called Foo in package p1 and package p2 without any conflicts). A package can hide
details of its implementation by using private and package-level visibility.

How do we access the names exported by a module? Given a module 𝑚 that exports an entity
names 𝑥, common syntax for accessing 𝑥 is 𝑚.𝑥. Many languages also provide a mechanism to use
all exported names of amodule using shorter notation—e.g., “Open𝑚”, or “import𝑚”, or “using𝑚”.

2 Existential types

In this section, wewill extend the simply-typed lambda calculuswith existential types (and records).
An existential type is written ∃𝛼. 𝜏, where type variable 𝛼 may occur in 𝜏. If a value has type ∃𝛼. 𝜏,
it means that it is a pair {𝜏′, 𝑣} of a type 𝜏′ and a value 𝑣, such that 𝑣 has type 𝜏{𝜏′/𝛼} .

We introduce a language construct to create existential values, and a construct to use existential
values. The syntax of the new language is given by the following grammar.

𝑒 ::= 𝑥 | 𝜆𝑥 :𝜏. 𝑒 | 𝑒1 𝑒2 | 𝑛 | 𝑒1 + 𝑒2

| { 𝑙1 = 𝑒1 , . . . , 𝑙𝑛 = 𝑒𝑛 } | 𝑒.𝑙
| pack {𝜏1 , 𝑒} as ∃𝛼. 𝜏2 | unpack {𝛼, 𝑥} = 𝑒1 in 𝑒2

𝑣 ::= 𝑛 | 𝜆𝑥 :𝜏. 𝑒 | { 𝑙1 = 𝑣1 , . . . , 𝑙𝑛 = 𝑣𝑛 } | pack {𝜏1 , 𝑣} as ∃𝛼. 𝜏2

𝜏 ::= int | 𝜏1 → 𝜏2 | { 𝑙1 :𝜏1 , . . . , 𝑙𝑛 :𝜏𝑛 } | ∃𝛼. 𝜏

1

Note that in this grammar, we annotate existential values with their existential type. The con-
struct to create an existential value, pack {𝜏1 , 𝑒} as ∃𝛼. 𝜏2, is often called packing, and the construct
to use an existential value is called unpacking. Before we present the operational semantics and
typing rules, let’s see an example to get an intuition for packing and unpacking.

Here we create an existential value that implements a counter, without revealing details of its
implementation.

let 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝐴𝐷𝑇 =
pack {int, { new = 0, get = 𝜆𝑖 : int. 𝑖 , inc = 𝜆𝑖 : int. 𝑖 + 1 } }
as ∃Counter. { new : Counter, get : Counter → int, inc : Counter → Counter }

in . . .

The abstract type name is Counter, and its concrete representation is int. The type of the variable
𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝐴𝐷𝑇 is ∃Counter. { new : Counter, get : Counter → int, inc : Counter → Counter }. We
can use the existential value 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝐴𝐷𝑇 as follows.

unpack {𝐶, 𝑐} = counterADT in
let 𝑦 = 𝑐.new in
𝑐.get (𝑐.inc (𝑐.inc 𝑦))

Note that we annotate the pack construct with the existential type. That is, we explicitly state the
type

∃Counter. {new :Counter, get :Counter → int, inc :Counter → Counter}.
Whydowe do this? Without this annotation, wewould not knowwhich occurrences of thewitness
type are intended to be replaced with the type variable, and which are intended to be left as the
witness type.

In the counter example above, the type of expressions 𝜆𝑖 : int. 𝑖 and 𝜆𝑖 : int. 𝑖 + 1 are both
int → int, but one is the implementation of get, of type Counter → int and the other is the
implementation of inc, of type Counter → Counter.

We now define the operational semantics for existentials. We add two new evaluation contexts,
and one evaluation rule for unpacking an existential value.

𝐸 ::= · · · | pack {𝜏1 , 𝐸} as ∃𝛼. 𝜏2 | unpack {𝛼, 𝑥} = 𝐸 in 𝑒

unpack {𝛼, 𝑥} = (pack {𝜏1 , 𝑣} as ∃𝛽. 𝜏2) in 𝑒 → 𝑒{𝑣/𝑥}{𝜏1/𝛼}
The typing rules ensure that existential values are used correctly.

Δ, Γ ⊢ 𝑒 :𝜏2{𝜏1/𝛼}
Δ, Γ ⊢ pack {𝜏1 , 𝑒} as ∃𝛼. 𝜏2 :∃𝛼. 𝜏2

Δ, Γ ⊢ 𝑒1 :∃𝛼. 𝜏1 Δ ∪ {𝛼} , Γ, 𝑥 :𝜏1 ⊢ 𝑒2 :𝜏2 Δ ⊢ 𝜏2 ok
Δ, Γ ⊢ unpack {𝛼, 𝑥} = 𝑒1 in 𝑒2 :𝜏2

2

Note that in the typing rule for unpack, the side condition Δ ⊢ 𝜏2 ok ensures that the existentially
quantified type variable 𝛼 does not appear free in 𝜏2. This rules out programs such as,

let 𝑚 =
pack {int, {𝑎 = 5, 𝑓 = 𝜆𝑥 : int.𝑥 + 1}} as ∃𝛼. {𝑎 :𝛼, 𝑓 :𝛼 → 𝛼}

in
unpack {𝛼, 𝑥} = 𝑚 in 𝑥. 𝑓 𝑥.𝑎

where the type of (𝑥. 𝑓 𝑥.𝑎) has 𝛼 free.

3 Church Encoding

It turns out that we can encode existentials in System F! The idea is to use a Church encoding,
where an existential value is a function that takes a type and then calls the continuation

∃𝛼. 𝜏 ≜ ∀𝛽. (∀𝛼. 𝜏 → 𝛽) → 𝛽

pack {𝜏1 , 𝑒} as ∃𝛼. 𝜏2 ≜ Λ𝛽. 𝜆 𝑓 : (∀𝛼.𝜏2 → 𝛽). 𝑓 [𝜏1] 𝑒
unpack {𝛼, 𝑥} = 𝑒1 in 𝑒2 ≜ 𝑒1 [𝜏2] (Λ𝛼.𝜆𝑥 : 𝜏1. 𝑒2)

where 𝑒1 has type ∃𝛼.𝜏1 and 𝑒2 has type 𝜏2

For further details see Pierce, Chapter 24.

3

	Modules
	Existential types
	Church Encoding

