
CS 4110 – Programming Languages and Logics
Lecture #20: Simply-Typed Lambda Calculus

A type is a collection of computational entities that share some common property. For example,
the type int represents all expressions that evaluate to an integer, and the type int → int represents
all functions from integers to integers. The Pascal subrange type [1..100] represents all integers
between 1 and 100.

You can see types as a static approximation of the dynamic behaviors of terms and programs.
Type systems are a lightweight formal method for reasoning about behavior of a program. Uses
of type systems include: naming and organizing useful concepts; providing information (to the
compiler or programmer) about data manipulated by a program; and ensuring that the run-time
behavior of programs meet certain criteria.

In this lecture, we’ll consider a type system for the lambda calculus that ensures that values
are used correctly; for example, that a program never tries to add an integer to a function. The
resulting language (lambda calculus plus the type system) is called the simply-typed lambda calculus
(STLC).

1 Simply-typed lambda calculus

The syntax of the simply-typed lambda calculus is similar to that of untyped lambda calculus,
with the exception of abstractions. Since abstractions define functions tht take an argument, in the
simply-typed lambda calculus, we explicitly state what the type of the argument is. That is, in an
abstraction 𝜆𝑥 :𝜏. 𝑒, the 𝜏 is the expected type of the argument.

The syntax of the simply-typed lambda calculus is as follows. It includes integer literals 𝑛,
addition 𝑒1 + 𝑒2, and the unit value (). The unit value is the only value of type unit.

expressions 𝑒 ::= 𝑥 | 𝜆𝑥 :𝜏. 𝑒 | 𝑒1 𝑒2 | 𝑛 | 𝑒1 + 𝑒2 | ()
values 𝑣 ::= 𝜆𝑥 :𝜏. 𝑒 | 𝑛 | ()
types 𝜏 ::= int | unit | 𝜏1 → 𝜏2

The operational semantics of the simply-typed lambda calculus are the same as the untyped lambda
calculus. For completeness, we present the CBV small step operational semantics here.

𝐸 ::= [·] | 𝐸 𝑒 | 𝑣 𝐸 | 𝐸 + 𝑒 | 𝑣 + 𝐸
CONTEXT

𝑒 → 𝑒′

𝐸[𝑒] → 𝐸[𝑒′]

𝛽-REDUCTION (𝜆𝑥 :𝜏. 𝑒) 𝑣 → 𝑒{𝑣/𝑥} ADD
𝑛1 + 𝑛2 → 𝑛

𝑛 = 𝑛1 + 𝑛2

1.1 The typing relation

The presence of types does not alter the evaluation of an expression at all. So what use are types?

1

We will use types to restrict what expressions we will evaluate. Specifically, the type system
for the simply-typed lambda calculus will ensure that any well-typed program will not get stuck.
A term 𝑒 is stuck if 𝑒 is not a value and there is no term 𝑒′ such that 𝑒 → 𝑒′. For example, the
expression 42 + 𝜆𝑥. 𝑥 is stuck: it attempts to add an integer and a function; it is not a value, and
there is no operational rule that allows us to reduce this expression. Another stuck expression is
() 47, which attempts to apply the unit value to an integer.

We introduce a relation (or judgment) over typing contexts (or type environments) Γ, expressions
𝑒, and types 𝜏. The judgment

Γ ⊢ 𝑒 :𝜏

is read as “𝑒 has type 𝜏 in context Γ”.
A typing context is a sequence of variables and their types. In the typing judgment Γ ⊢ 𝑒 :𝜏, we

will ensure that if 𝑥 is a free variable of 𝑒, then Γ associates 𝑥 with a type. We can view a typing
context as a partial function from variables to types. We will write Γ, 𝑥 : 𝜏 or Γ[𝑥 ↦→ 𝜏] to indicate
the typing context that extends Γ by associating variable 𝑥 with with type 𝜏. The empty context is
sometimes written ∅, or often just not written at all. For example, we write ⊢ 𝑒 :𝜏 to mean that the
closed term 𝑒 has type 𝜏 under the empty context.

Given a typing environment Γ and expression 𝑒, if there is some 𝜏 such that Γ ⊢ 𝑒 : 𝜏, we say
that 𝑒 is well-typed under context Γ; if Γ is the empty context, we say 𝑒 is well-typed.

We define the judgment Γ ⊢ 𝑒 :𝜏 inductively.

T-INT
Γ ⊢ 𝑛 : int

T-ADD
Γ ⊢ 𝑒1 : int Γ ⊢ 𝑒2 : int

Γ ⊢ 𝑒1 + 𝑒2 : int
T-UNIT

Γ ⊢ () :unit

T-VAR
Γ(𝑥) = 𝜏

Γ ⊢ 𝑥 :𝜏
T-ABS

Γ, 𝑥 :𝜏 ⊢ 𝑒 :𝜏′

Γ ⊢ 𝜆𝑥 :𝜏. 𝑒 :𝜏 → 𝜏′
T-APP

Γ ⊢ 𝑒1 :𝜏 → 𝜏′ Γ ⊢ 𝑒2 :𝜏
Γ ⊢ 𝑒1 𝑒2 :𝜏′

An integer 𝑛 always has type int. Expression 𝑒1 + 𝑒2 has type int if both 𝑒1 and 𝑒2 have type int.
The unit value () always has type unit.

Variable 𝑥 has whatever type the context associates with 𝑥. Note that Γ must contain an asso-
ciation for 𝑥 in order for the judgment Γ ⊢ 𝑥 :𝜏 to hold, that is, 𝑥 ∈ dom(Γ). The abstraction 𝜆𝑥 :𝜏. 𝑒
has the function type 𝜏 → 𝜏′ if the function body 𝑒 has type 𝜏′ under the assumption that 𝑥 has
type 𝜏. Finally, an application 𝑒1 𝑒2 has type 𝜏′ provided that 𝑒1 is a function of type 𝜏 → 𝜏′, and
𝑒2 is an argument of the expected type, i.e., of type 𝜏.

To type check an expression 𝑒, we attempt to construct a derivation of the judgment ⊢ 𝑒 :𝜏, for
some type 𝜏. For example, consider the program (𝜆𝑥 : int. 𝑥 + 40) 2. The following is a proof that
(𝜆𝑥 : int. 𝑥 + 40) 2 is well-typed.

T-APP
T-ABS

T-ADD
T-VAR

𝑥 : int ⊢ 𝑥 : int
T-INT

𝑥 : int ⊢ 40: int
𝑥 : int ⊢ 𝑥 + 40: int

⊢ 𝜆𝑥 : int. 𝑥 + 40: int → int
T-INT ⊢ 2: int

⊢ (𝜆𝑥 : int. 𝑥 + 40) 2: int

2

1.2 Type soundness

Wementioned above that the type system ensures that any well-typed program does not get stuck.
We can state this property formally.

Theorem (Type soundness). If ⊢ 𝑒 :𝜏 and 𝑒 →∗ 𝑒′ and 𝑒′ ̸→ then 𝑒′ is a value and ⊢ 𝑒′ :𝜏.

We’ll prove this theorem in the next lecture.

3

	Simply-typed lambda calculus
	The typing relation
	Type soundness

