
CS 4110 – Programming Languages and Logics
Lecture #17: De Bruijn, Combinators, Encodings

˘

1 de Bruĳn Notation

One way to avoid the tricky interaction between free and bound names in the substitution operator
is to pick a representation for expressions that doesn’t have any names at all! Intuitively, we can
think of a bound variable is just a pointer to the 𝜆 that binds it. For example, in 𝜆𝑥.𝜆𝑦.𝑦 𝑥, the 𝑦
points to the first 𝜆 and the 𝑥 points to the second 𝜆.

So-called de Bruĳn notation uses this idea as the representation for 𝜆 expressions. Here is the
grammar for 𝜆 expressions in de Bruĳn notation:

𝑒 ::= 𝑛 | 𝜆.𝑒 | 𝑒 𝑒
Variables are represented by integers 𝑛 that refer to (the index of) their binder while 𝑙𝑎𝑚𝑏𝑑𝑎-
abstractions have the form 𝜆.𝑒. Note that the the variable bound by the abstraction is not named—
i.e., the representation is nameless.

As examples, here are several terms written using standard notation and in de Bruĳn notation:

Standard de Bruĳn
𝜆𝑥.𝑥 𝜆.0
𝜆𝑧.𝑧 𝜆.0
𝜆𝑥.𝜆𝑦.𝑥 𝜆.𝜆.1
𝜆𝑥.𝜆𝑦.𝜆𝑠.𝜆𝑧.𝑥 𝑠 (𝑦 𝑠 𝑧) 𝜆.𝜆.𝜆.𝜆.3 1 (2 1 0)
(𝜆𝑥.𝑥 𝑥) (𝜆𝑥.𝑥 𝑥) (𝜆.0 0) (𝜆.0 0)
(𝜆𝑥.𝜆𝑥.𝑥) (𝜆𝑦.𝑦) (𝜆.𝜆.0) (𝜆.0)

To represent a 𝜆-expression that contains free variables in de Bruĳn notation, we need a way to
map the free variables to integers. We will work with respect to a map Γ from variables to integers
called a context. As an example, if Γ maps 𝑥 to 0 and 𝑦 to 1, then the de Bruĳn representation of 𝑥 𝑦
with respect to Γ is 0 1, while the representation of 𝜆𝑧. 𝑥 𝑦 𝑧 with respect to Γ is 𝜆. 1 2 0. Note that
in this second example, because we have gone under a 𝜆, we have shifted the integers representing
𝑥 and 𝑦 up by one to avoid capturing them.

In general, whenever we work de Bruĳn representations of expressions containing free vari-
ables (i.e., when working with respect to a context Γ) we will need to modify the indices of those
variables. For example, when we substitute an expression containing free variables under a 𝜆, we
will need to shift the indices up so that they continue to refer to the same numbers with respect to
Γ after the substitution as they did before. For example, if we substitute 0 1 for the variable bound
by the outermost 𝜆 in 𝜆.𝜆.1 we should get 𝜆.𝜆.2 3, not 𝜆.𝜆.0 1. We will use an auxiliary function

1

that shifts the indices of free variables above a cutoff 𝑐 up by 𝑖:

↑𝑖𝑐 (𝑛) =

{
𝑛 if 𝑛 < 𝑐
𝑛 + 𝑖 otherwise

↑𝑖𝑐 (𝜆.𝑒) = 𝜆.(↑𝑖𝑐+1 𝑒)
↑𝑖𝑐 (𝑒1 𝑒2) = (↑𝑖𝑐 𝑒1) (↑𝑖𝑐 𝑒2)

The cutoff keeps track of the variables that were bound in the original expression and so should
not be shifted as the shifting operator walks down the structure of an expression. The cutoff is 0
initially.

Using this shifting function, we can define substitution as follows:

𝑛{𝑒/𝑚} =

{
𝑒 if 𝑛 = 𝑚
𝑛 otherwise

(𝜆.𝑒1){𝑒/𝑚} = 𝜆.𝑒1{(↑1
0 𝑒)/𝑚 + 1}))

(𝑒1 𝑒2){𝑒/𝑚} = (𝑒1{𝑒/𝑚}) (𝑒2{𝑒/𝑚})
Note that when we go under a 𝜆 we increase the index of the variable we are substituting for and
shift the free variables in the expression 𝑒 up by one.

The 𝛽 rule for terms in de Bruĳn notation is as follows:

𝛽 (𝜆.𝑒1) 𝑒2 →↑−1
0 (𝑒1{↑1

0 𝑒2/0})
That is, we substitute occurrences of 0, the index of the variable being bound by the 𝜆, with 𝑒2
shifted up by one. Then we shift the result down by one to ensure that any free variables in 𝑒1
continue to refer to the same things after we remove the 𝜆.

To illustrate how this works consider the following example, which we wrote as (𝜆𝑢.𝜆𝑣.𝑢 𝑥) 𝑦
in standard notation. We will work with respect to a context where Γ(𝑥) = 0 and Γ(𝑦) = 1.

(𝜆.𝜆.1 2) 1
→ ↑−1

0 ((𝜆.1 2){(↑1
0 1)/0})

= ↑−1
0 ((𝜆.1 2){2/0})

= ↑−1
0 𝜆.((1 2){(↑1

0 2)/(0 + 1)})
= ↑−1

0 𝜆.((1 2){3/1})
= ↑−1

0 𝜆.(1{3/1}) (2{3/1})
= ↑−1

0 𝜆.3 2
= 𝜆.2 1

which, in standard notation (with respect to Γ), is the same as 𝜆𝑣.𝑦 𝑥.

2 Combinators

Yet another way to avoid the issues having to do with free and bound variable names in the 𝜆-
calculus is to work with closed expressions or combinators. It turns out that just using two combi-
nators, S, K, and application, we can encode the entire 𝜆-calculus.

2

Here are the evaluation rules for S, K, as well as a third combinator I, which will also be useful:

K 𝑥 𝑦 → 𝑥
S 𝑥 𝑦 𝑧 → 𝑥 𝑧 (𝑦 𝑧)
I 𝑥 → 𝑥

Equivalently, here are their definitions as closed 𝜆-expressions:

K = 𝜆𝑥.𝜆𝑦. 𝑥
S = 𝜆𝑥.𝜆𝑦.𝜆𝑧. 𝑥 𝑧 (𝑦 𝑧)
I = 𝜆𝑥. 𝑥

It is not hard to see that I is not needed—it can be encoded as S K K.
To show how these combinators can be used to encode the 𝜆-calculus, we have to define a

translation that takes an arbitrary closed 𝜆-calculus expression and turns it into a combinator term
that behaves the same during evaluation. This translation is called bracket abstraction. It proceeds in
two steps. First, we define a function [𝑥] that takes a combinator term 𝑀 possibly containing free
variables and builds another term that behaves like 𝜆𝑥.𝑀, in the sense that ([𝑥] 𝑀) 𝑁 → 𝑀{𝑁/𝑥}
for every term 𝑁 :

[𝑥] 𝑥 = I
[𝑥] 𝑁 = K 𝑁 where 𝑥 ∉ fv(𝑁)

[𝑥] 𝑁1 𝑁2 = S ([𝑥] 𝑁1) ([𝑥] 𝑁2)
Second, we define a function (𝑒)∗ that maps a 𝜆-calculus expression to a combinator term:

(𝑥)∗ = 𝑥
(𝑒1 𝑒2)∗ = (𝑒1)∗ (𝑒2)∗
(𝜆𝑥.𝑒)∗ = [𝑥] (𝑒)∗

As an example, the expression 𝜆𝑥.𝜆𝑦. 𝑥 is translated as follows:

(𝜆𝑥.𝜆𝑦. 𝑥)∗
= [𝑥] (𝜆𝑦. 𝑥)∗
= [𝑥] ([𝑦] 𝑥)
= [𝑥] (K 𝑥)
= (S ([𝑥] K) ([𝑥] 𝑥))
= S (K K) I

We can check that this behaves the same as our original 𝜆-expression by seeing how it evaluates
when applied to arbitrary expressions 𝑒1 and 𝑒2.

(𝜆𝑥.𝜆𝑦. 𝑥) 𝑒1 𝑒2
= (𝜆𝑦. 𝑒1) 𝑒2
= 𝑒1

and
(S (K K) I) 𝑒1 𝑒2

= (K K 𝑒1) (I 𝑒1) 𝑒2
= K 𝑒1 𝑒2
= 𝑒1

3

	de Bruijn Notation
	Combinators

