
CS 4110 – Programming Languages and Logics
Lecture #15: Encodings

1 𝜆-calculus encodings

The pure 𝜆-calculus contains only functions as values. It is not exactly easy to write large or in-
teresting programs in the pure 𝜆-calculus. We can however encode objects, such as booleans, and
integers.

1.1 Booleans

Let us start by encoding constants and operators for booleans. That is, we want to define functions
TRUE, FALSE, AND, NOT, IF, and other operators that behave as expected. For example:

AND TRUE FALSE = FALSE
NOT FALSE = TRUE

IF TRUE 𝑒1 𝑒2 = 𝑒1

IF FALSE 𝑒1 𝑒2 = 𝑒2

Let’s start by defining TRUE and FALSE:

TRUE ≜ 𝜆𝑥.𝜆𝑦. 𝑥

FALSE ≜ 𝜆𝑥.𝜆𝑦. 𝑦

Thus, both TRUE and FALSE are functions that take two arguments; TRUE returns the first, and
FALSE returns the second. We want the function IF to behave like

𝜆𝑏.𝜆𝑡.𝜆 𝑓 . if 𝑏 = TRUE then 𝑡 else 𝑓 .

The definitions for TRUE and FALSE make this very easy.

IF ≜ 𝜆𝑏.𝜆𝑡.𝜆 𝑓 . 𝑏 𝑡 𝑓

Definitions of other operators are also straightforward.

NOT ≜ 𝜆𝑏. 𝑏 FALSE TRUE
AND ≜ 𝜆𝑏1.𝜆𝑏2. 𝑏1 𝑏2 FALSE

OR ≜ 𝜆𝑏1.𝜆𝑏2. 𝑏1 TRUE 𝑏2

1

1.2 Church numerals

Church numerals encode a number 𝑛 as a function that takes 𝑓 and 𝑥, and applies 𝑓 to 𝑥 𝑛 times.

0 ≜ 𝜆 𝑓 .𝜆𝑥. 𝑥

1 = 𝜆 𝑓 .𝜆𝑥. 𝑓 𝑥

2 = 𝜆 𝑓 .𝜆𝑥. 𝑓 (𝑓 𝑥)
SUCC ≜ 𝜆𝑛.𝜆 𝑓 .𝜆𝑥. 𝑓 (𝑛 𝑓 𝑥)

In the definition for SUCC, the expression 𝑛 𝑓 𝑥 applies 𝑓 to 𝑥 𝑛 times (assuming that variable 𝑛
is the Church encoding of the natural number 𝑛). We then apply 𝑓 to the result, meaning that we
apply 𝑓 to 𝑥 𝑛 + 1 times.

Given the definition of SUCC, we can easily define addition. Intuitively, the natural number
𝑛1 + 𝑛2 is the result of apply the successor function 𝑛1 times to 𝑛2.

PLUS ≜ 𝜆𝑛1.𝜆𝑛2. 𝑛1 SUCC 𝑛2

2

	-calculus encodings
	Booleans
	Church numerals

