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Inference Rules for Logic

We have used inference rules to build up inductively defined sets
of PL concepts: operational steps, valid Hoare triples,
associations between terms and types, etc.

Logicians use the same kind of notation to build up the set of
true logical formulas.



Inference Rules for Logic

We have used inference rules to build up inductively defined sets
of PL concepts: operational steps, valid Hoare triples,
associations between terms and types, etc.

Logicians use the same kind of notation to build up the set of
true logical formulas.

Here’s a rule from natural deduction, a constructive logic
invented by logician Gerhard Gentzen in 1935:

¢
¢NY

Given a proof of ¢ and a proof of v, the rule lets you construct a
proof of ¢ A ).

A-INTRO



Natural Deduction

Let’s use our usual 4110 tools to define the set of true formulas
(“theorems”).



Natural Deduction

Let’s use our usual 4110 tools to define the set of true formulas
(“theorems”).

We'll start with a grammar for formulas:
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where X ranges over Boolean variables
and —¢ is an abbreviation for ¢ — 1.
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Natural Deduction

Let’s define a judgment that that a formula is true given a set of
assumptions [

)

where I is just a list of formulas.

If = ¢ (with no assumptions), we say ¢ is a theorem.

Examples:

e FAANB—A

e --(AANB) - -AV B
e AB.CFB

(6]



Natural Deduction

Let’s write the rules for our judgment:

M=o M=
FrEo Ay
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Natural Deduction

Let’s write the rules for our judgment:

M=o M=
A-INTRO
FrEo Ay
FrEo ANy FEoAY
—————— A-ELIMI —————— A-ELIM2
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Natural Deduction

Let’s write the rules for our judgment:

M=o M=
A-INTRO
FrEo Ay
FrEo ANy FEoAY
—————— A-ELIMI —————— A-ELIM2
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Natural Deduction

Let’s write the rules for our judgment:

M=o M=
A-INTRO
Fr=o Ay
Fr=o A9y Fr-oAY
———  A-ELIM1 ———  A-ELIM2
) M=
Loy
— —-INTRO
NEo¢— Y

...and so on.



Natural Deduction
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Natural Deduction

Let’s try a proof! We can write a proofthat AAB — BAAisa
theorem.



Natural Deduction
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theorem.
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Natural Deduction

Let’s try a proof! We can write a proofthat AAB — BAAisa
theorem.

———  AXIOM ———  AXIOM
AANBFAAB ANBEAAB

A-ELIM2 A-ELIM1
ANBEB ANBEA

AANBFBAA
FAAB—BAA

A-INTRO

—-INTRO

Does this look familiar?

——— T-VAR ——— T-VAR
X:AXBFXx:AXB X:AXBFXx:AXB

T-#1 T-#2
X:AXBF #2x:B X:AXBF #1x:A

X:AXBEF (#2x,#1x):BxA
F X (#2Xx,#1X):AXB— BXxA




Propositions as Types

Every natural deduction proof tree has a corresponding type
tree in System F with product and sum types! And vice-versa!

Type Systems Formal Logic
7 Type ¢ Formula
7 isinhabited ¢ isatheorem
e Well-typed expression | 7 Proof

A program with a given type acts as a witness that the type’s
corresponding formula is true.



Propositions as Types

Every type rule in System F with product and sum types
corresponds 1-1 with a proof rule in natural deduction:

Type Systems Formal Logic
— Function | — Implication
x  Product | A Conjunction
+ Sum vV Disjunction
VYV  Universal | V  Quantifier

You can even add existential types to correspond to existential
quantification. It still works!



Propositions as Types

Every type rule in System F with product and sum types
corresponds 1-1 with a proof rule in natural deduction:

Type Systems Formal Logic
— Function | — Implication
x  Product | A Conjunction
+ Sum vV Disjunction
VYV  Universal | V  Quantifier

You can even add existential types to correspond to existential
quantification. It still works!

Is this a coincidence? Natural deduction was invented by a
German logician in 1935. Types for the A-calculus were invented
by Church at Princeton in 1940.



Propositions as Types Through the Ages

Natural Deduction
Gentzen (1935)

Type Schemes
Hindley (1969)

System F
Girard (1972)

Modal Logic
Lewis (1910)

Classical-Intuitionistic
Embedding
Godel (1933)

=

Typed X\-Calculus
Church (1940)

ML’s Type System
Milner (1975)

Polymorphic \-Calculus
Reynolds (1974)

Monads
Kleisli (1965), Moggi (1987)

Continuation Passing Style
Reynolds (1972)



Term Assignment

This all means that we have a new way of proving theorems:
writing programs!
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Term Assignment

This all means that we have a new way of proving theorems:
writing programs!

To prove a formula ¢:
1. Convert the ¢ into its corresponding type 7.
2. Find some program v that has the type 7.

3. Realize that the existence of vimplies a type tree for - v: 7,
which implies a proof tree for - ¢.



Negation and Continuations

Let’s explore one extension. We'd like to use this rule from

classical logic:
()
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but there’s no obvious correspondence in System F.
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the System F function type (1 — L) — L.

So what we need is a way to take any program of any type 7 and
turn itinto a program of type (1 — 1) — L.



Negation and Continuations

Let’s explore one extension. We'd like to use this rule from

classical logic:
()

M- ——¢

but there’s no obvious correspondence in System F.

Recall that —¢ is shorthand for ¢ — . So =—¢ corresponds to
the System F function type (1 — L) — L.

So what we need is a way to take any program of any type 7 and
turn itinto a program of type (1 — 1) — L.

Shockingly, that’s exactly what the CPS transform does! A 7
becomes a function that takes a continuation 7 — 1 and
invokes it, producing L.



