CS 4110

Programming Languages & Logics

Lecture 25 Type Inference

Review: Polymorphic λ -Calculus

Syntax

$$e ::= n \mid x \mid \lambda x : \tau. e \mid e_1 e_2 \mid \Lambda X. e \mid e[\tau]$$
$$v ::= n \mid \lambda x : \tau. e \mid \Lambda X. e$$

Dynamic Semantics

$$\mathsf{E} ::= [\cdot] \mid \mathsf{E} \mathsf{e} \mid \mathsf{v} \mathsf{E} \mid \mathsf{E} [\tau]$$

$$\frac{e \to e'}{E[e] \to E[e']} \qquad \overline{(\lambda x : \tau. e) \, v \to e\{v/x\}} \qquad \overline{(\Lambda X. e) \, [\tau] \to e\{\tau/X\}}$$

Review: Polymorphic λ -Calculus

$$\frac{\overline{\Delta}, \Gamma \vdash n: int}{\overline{\Delta}, \Gamma \vdash n: int} \qquad \frac{\overline{\Delta}, \Gamma \vdash x: \tau}{\overline{\Delta}, \Gamma \vdash x: \tau}$$

$$\frac{\underline{\Delta}, \Gamma, x: \tau \vdash e: \tau' \quad \Delta \vdash \tau \text{ ok}}{\overline{\Delta}, \Gamma \vdash \lambda x: \tau. e: \tau \rightarrow \tau'} \qquad \frac{\underline{\Delta}, \Gamma \vdash e_1: \tau \rightarrow \tau' \quad \Delta, \Gamma \vdash e_2: \tau}{\overline{\Delta}, \Gamma \vdash e_1 e_2: \tau'}$$

$$\frac{\underline{\Delta} \cup \{X\}, \Gamma \vdash e: \tau}{\overline{\Delta}, \Gamma \vdash \Lambda X. e: \forall X. \tau} \qquad \frac{\underline{\Delta}, \Gamma \vdash e: \forall X. \tau' \quad \Delta \vdash \tau \text{ ok}}{\overline{\Delta}, \Gamma \vdash e [\tau]: \tau' \{\tau/X\}}$$

Review: Polymorphic λ -Calculus

Polymorphism let us write a doubling function that works for *any* type of function:

double
$$\triangleq \Lambda X. \lambda f: X \to X. \lambda x: X. f(fx).$$

The type of this expression is:

$$\forall X. (X \to X) \to X \to X$$

You can use the polymorphic function by providing a type:

double **[int]** (λn : int. n + 1) 7

Type Inference

In languages like OCaml, programmers don't have to annotate their programs with $\forall X. \tau$ or $e[\tau]$.

In languages like OCaml, programmers don't have to annotate their programs with $\forall X. \tau$ or $e[\tau]$.

For example, we can write:

let double f x = f (f x)

and OCaml will figure out that the type is:

('a \rightarrow 'a) \rightarrow 'a \rightarrow 'a

which is equivalent to the same System F type: $\forall A. (A \rightarrow A) \rightarrow A \rightarrow A$ In languages like OCaml, programmers don't have to annotate their programs with $\forall X. \tau$ or $e[\tau]$.

We can also write

double (fun x \rightarrow x+1) 7

and OCaml will infer that the polymorphic function double is instantiated at the type int.

ML Polymorphism

However, polymorphism in OCaml and other MLs, has some restrictions to ensure that type inference remains *decidable*.

ML Polymorphism

However, polymorphism in OCaml and other MLs, has some restrictions to ensure that type inference remains *decidable*.

These restrictions, called *prenex polymorphism*, stipulate that \forall s may only appear in the "outermost" position.

However, polymorphism in OCaml and other MLs, has some restrictions to ensure that type inference remains *decidable*.

These restrictions, called *prenex polymorphism*, stipulate that \forall s may only appear in the "outermost" position.

Examples

• Prenex: $\forall \alpha. \alpha \rightarrow \alpha$

However, polymorphism in OCaml and other MLs, has some restrictions to ensure that type inference remains *decidable*.

These restrictions, called *prenex polymorphism*, stipulate that \forall s may only appear in the "outermost" position.

Examples

- Prenex: $\forall \alpha. \alpha \rightarrow \alpha$
- Not prenex: $(\forall \alpha. \alpha \rightarrow \alpha) \rightarrow int$

However, polymorphism in OCaml and other MLs, has some restrictions to ensure that type inference remains *decidable*.

These restrictions, called *prenex polymorphism*, stipulate that \forall s may only appear in the "outermost" position.

Examples

- Prenex: $\forall \alpha. \alpha \rightarrow \alpha$
- Not prenex: $(\forall \alpha. \alpha \rightarrow \alpha) \rightarrow int$

These restrictions have the following practical ramifications:

- Can't instantiate type variables with polymorphic types
- Can't put a polymorphic type on the left of an arrow

These restrictions mean that certain terms that are typeable in System F are not typeable in ML!

These restrictions mean that certain terms that are typeable in System F are not typeable in ML!

```
OCaml version 4.01.0
# fun x -> x x;;
Error: This expression has type 'a -> 'b
   but an expression was expected of type 'a
   The type variable 'a occurs inside 'a -> 'b
```

Type Inference

Type inference may be undecidable for the polymorphic λ -calculus and OCaml, but it is possible for the simply-tpyed λ -calculus!

Type Inference

Type inference may be undecidable for the polymorphic λ -calculus and OCaml, but it is possible for the simply-tpyed λ -calculus!

Type inference for the STLC means guessing a τ in every abstraction in an *untyped* version:

λx. e

to produce a *typed* program:

λ**x**:τ.e

that we can use in the typing rule for functions.

Here's an untyped program: $\lambda a. \lambda b. \lambda c.$ if a (b + 1) then b else c

Here's an untyped program: $\lambda a. \lambda b. \lambda c.$ if a (b + 1) then b else c

Here's an untyped program: $\lambda a. \lambda b. \lambda c.$ if a (b + 1) then b else c

Informal inference:

• b must be int

Here's an untyped program: $\lambda a. \lambda b. \lambda c.$ if a (b + 1) then b else c

- b must be int
- a must be some kind of function

Here's an untyped program: $\lambda a. \lambda b. \lambda c.$ if a (b + 1) then b else c

- b must be int
- a must be some kind of function
- the argument type of *a* must be the same as *b* + 1

Here's an untyped program: $\lambda a. \lambda b. \lambda c.$ if a (b + 1) then b else c

- *b* must be **int**
- a must be some kind of function
- the argument type of *a* must be the same as *b* + 1
- the result type of *a* must be **bool**

Here's an untyped program: $\lambda a. \lambda b. \lambda c.$ if a (b + 1) then b else c

- *b* must be **int**
- a must be some kind of function
- the argument type of *a* must be the same as *b* + 1
- the result type of *a* must be **bool**
- the type of *c* must be the same as *b*

Here's an untyped program: $\lambda a. \lambda b. \lambda c.$ if a (b + 1) then b else c

Informal inference:

- b must be int
- a must be some kind of function
- the argument type of *a* must be the same as *b* + 1
- the result type of *a* must be **bool**
- the type of *c* must be the same as *b*

Putting all these pieces together:

 λa : int \rightarrow bool. λb : int. λc : int. if a (b + 1) then b else c

Constriant-Based Inference

Let's automate type inference!

Constriant-Based Inference

Let's automate type inference!

We introduce a new judgment:

```
\Gamma \vdash e : \tau \mid C
```

Given a typing context Γ and an expression *e*, it generates a set of *constraints*—equations between types.

Constriant-Based Inference

Let's automate type inference!

We introduce a new judgment:

 $\Gamma \vdash e : \tau \mid C$

Given a typing context Γ and an expression *e*, it generates a set of *constraints*—equations between types.

If these constraints are solvable, then e can be well-typed in Γ .

A solution to a set of constraints is a *type substitution* σ that, for each equation, makes both sides syntactically equal.

Let's define the type inference judgment for this STLC language:

$$e ::= x \mid \lambda x : \tau. e \mid e_1 e_2 \mid n \mid e_1 + e_2$$

$$\tau ::= int \mid X \mid \tau_1 \to \tau_2$$

You can use a type variable *X* wherever you want to have a type inferred.

$$\frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau \mid \emptyset} \text{ CT-Var}$$

$$\frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau \mid \emptyset} \text{ CT-Var} \qquad \qquad \frac{\Gamma \vdash n : \text{int} \mid \emptyset}{\Gamma \vdash n : \text{int} \mid \emptyset} \text{ CT-Int}$$

$$\frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau \mid \emptyset} \text{ CT-Var} \qquad \frac{\Gamma \vdash n : \text{int} \mid \emptyset}{\Gamma \vdash n : \text{int} \mid \emptyset} \text{ CT-INT}$$

$$\frac{\Gamma \vdash e_1 : \tau_1 \mid C_1 \quad \Gamma \vdash e_2 : \tau_2 \mid C_2}{\Gamma \vdash e_1 + e_2 : \text{int} \mid C_1 \cup C_2 \cup \{\tau_1 = \text{int}, \tau_2 = \text{int}\}} \text{ CT-ADD}$$

$$\frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau \mid \emptyset} \text{ CT-VAR} \qquad \frac{\Gamma \vdash n : \mathbf{int} \mid \emptyset}{\Gamma \vdash n : \mathbf{int} \mid \emptyset} \text{ CT-INT}$$

$$\frac{\Gamma \vdash e_1 : \tau_1 \mid C_1 \quad \Gamma \vdash e_2 : \tau_2 \mid C_2}{\Gamma \vdash e_1 + e_2 : \mathbf{int} \mid C_1 \cup C_2 \cup \{\tau_1 = \mathbf{int}, \tau_2 = \mathbf{int}\}} \text{ CT-ADD}$$

$$\frac{\Gamma, x : \tau_1 \vdash e : \tau_2 \mid C}{\Gamma \vdash \lambda x : \tau_1 . e : \tau_1 \to \tau_2 \mid C} \text{ CT-ABS}$$

$$\frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau \mid \emptyset} \text{ CT-Var} \qquad \qquad \frac{\Gamma \vdash n : \text{int} \mid \emptyset}{\Gamma \vdash n : \text{int} \mid \emptyset} \text{ CT-Int}$$

$$\frac{\Gamma \vdash e_1 : \tau_1 \mid C_1 \quad \Gamma \vdash e_2 : \tau_2 \mid C_2}{\Gamma \vdash e_1 + e_2 : \mathsf{int} \mid C_1 \cup C_2 \cup \{\tau_1 = \mathsf{int}, \tau_2 = \mathsf{int}\}} \text{ CT-Add}$$

$$\frac{\Gamma, x: \tau_1 \vdash e: \tau_2 \mid C}{\Gamma \vdash \lambda x: \tau_1. e: \tau_1 \rightarrow \tau_2 \mid C} \text{ CT-Abs}$$

$$\frac{X \operatorname{fresh} \ \ \Gamma \vdash e_1 : \tau_1 \mid C_1 \quad \Gamma \vdash e_2 : \tau_2 \mid C_2}{\Gamma \vdash e_1 : \tau_1 \cup C_2 \cup \{\tau_1 = \tau_2 \to X\}} \operatorname{CT-App}$$

A type substitution is a finite map from type variables to types.

Example: The substitution

 $[X \mapsto \mathsf{int}, Y \mapsto \mathsf{int} \to \mathsf{int}]$

maps type variable X to **int** and Y to **int** \rightarrow **int**.

Type Substitution

We can define substitution of type variables formally:

Type Substitution

We can define substitution of type variables formally:

$$\sigma(X) \triangleq \begin{cases} \tau & \text{if } X \mapsto \tau \in \sigma \\ X & \text{if } X \text{ not in the domain of } \sigma \end{cases}$$

We can define substitution of type variables formally:

$$\sigma(X) \triangleq \begin{cases} \tau & \text{if } X \mapsto \tau \in \sigma \\ X & \text{if } X \text{ not in the domain of } \sigma \end{cases}$$
$$\sigma(\text{int}) \triangleq \text{int}$$

We can define substitution of type variables formally:

$$\sigma(X) \triangleq \begin{cases} \tau & \text{if } X \mapsto \tau \in \sigma \\ X & \text{if } X \text{ not in the domain of } \sigma \end{cases}$$
$$\sigma(\text{int}) \triangleq \text{int}$$
$$\sigma(\tau \to \tau') \triangleq \sigma(\tau) \to \sigma(\tau')$$

We can define substitution of type variables formally:

$$\sigma(X) \triangleq \begin{cases} \tau & \text{if } X \mapsto \tau \in \sigma \\ X & \text{if } X \text{ not in the domain of } \sigma \end{cases}$$
$$\sigma(\text{int}) \triangleq \text{int}$$
$$\sigma(\tau \to \tau') \triangleq \sigma(\tau) \to \sigma(\tau')$$

We don't need to worry about avoiding variable capture: all type variables are "free."

We can define substitution of type variables formally:

$$\sigma(X) \triangleq \begin{cases} \tau & \text{if } X \mapsto \tau \in \sigma \\ X & \text{if } X \text{ not in the domain of } \sigma \end{cases}$$
$$\sigma(\text{int}) \triangleq \text{int}$$
$$\sigma(\tau \to \tau') \triangleq \sigma(\tau) \to \sigma(\tau')$$

We don't need to worry about avoiding variable capture: all type variables are "free."

Given two substitutions σ_1 and σ_2 , we write $\sigma_1 \circ \sigma_2$ for their composition: $(\sigma_1 \circ \sigma_2)(\tau) = \sigma_1(\sigma_2(\tau))$.

Our constraints are of the form $\tau = \tau'$.

Our constraints are of the form $\tau = \tau'$.

```
We say that a substitution \sigma unifies constraint \tau = \tau' if \sigma(\tau) = \sigma(\tau').
```

We say that substitution σ satisfies (or unifies) set of constraints C if σ unifies every constraint in C.

If:

- $\Gamma \vdash e: \tau \mid C$, and
- σ satisfies C,

then e has type τ' under Γ , where $\sigma(\tau) = \tau'$.

If there are no substitutions that satisfy C, then e is not typeable.

If:

- $\Gamma \vdash e: \tau \mid C$, and
- σ satisfies C,

```
then e has type \tau' under \Gamma,
where \sigma(\tau) = \tau'.
```

If there are no substitutions that satisfy C, then e is not typeable.

So let's find a substitution σ that unifies a set of constraints C!

 $unify(\emptyset) \triangleq []$ (the empty substitution)

 $unify(\emptyset) \triangleq []$ (the empty substitution) $unify(\{\tau = \tau'\} \cup C') \triangleq$ $if \tau = \tau'$ then unify(C')

 $unify(\emptyset) \triangleq []$ (the empty substitution) $unify(\{\tau = \tau'\} \cup C') \triangleq$ if $\tau = \tau'$ then unify(C')else if $\tau = X$ and X not a free variable of τ' then $unify(C'\{\tau'/X\}) \circ [X \mapsto \tau']$

 $unify(\emptyset) \triangleq [] \quad (\text{the empty substitution})$ $unify(\{\tau = \tau'\} \cup C') \triangleq$ $\text{if } \tau = \tau' \text{ then}$ unify(C') $\text{else if } \tau = X \text{ and } X \text{ not a free variable of } \tau' \text{ then}$ $unify(C'\{\tau'/X\}) \circ [X \mapsto \tau']$ $\text{else if } \tau' = X \text{ and } X \text{ not a free variable of } \tau \text{ then}$ $unify(C'\{\tau/X\}) \circ [X \mapsto \tau']$

 $unify(\emptyset) \triangleq []$ (the empty substitution) unify({ $\tau = \tau'$ } \cup C') \triangleq if $\tau = \tau'$ then unify(C')else if $\tau = X$ and X not a free variable of τ' then $unify(C'\{\tau'/X\}) \circ [X \mapsto \tau']$ else if $\tau' = X$ and X not a free variable of τ then $unify(C'\{\tau/X\}) \circ [X \mapsto \tau]$ else if $\tau = \tau_0 \rightarrow \tau_1$ and $\tau' = \tau'_0 \rightarrow \tau'_1$ then $unify(C' \cup \{\tau_0 = \tau'_0, \tau_1 = \tau'_1\})$

 $unif_{\mathcal{V}}(\emptyset) \triangleq []$ (the empty substitution) unify({ $\tau = \tau'$ } \cup C') \triangleq if $\tau = \tau'$ then unify(C')else if $\tau = X$ and X not a free variable of τ' then $unify(C'\{\tau'/X\}) \circ [X \mapsto \tau']$ else if $\tau' = X$ and X not a free variable of τ then $unify(C'\{\tau/X\}) \circ [X \mapsto \tau]$ else if $\tau = \tau_0 \rightarrow \tau_1$ and $\tau' = \tau'_0 \rightarrow \tau'_1$ then $unify(C' \cup \{\tau_0 = \tau'_0, \tau_1 = \tau'_1\})$ else

fail

Unification Properties

The unification algorithm always terminates.

The unification algorithm always terminates.

The solution, if it exists, is the most general solution: if $\sigma = unify(C)$ and σ' is a solution to C, then there is some σ'' such that $\sigma' = (\sigma'' \circ \sigma)$.