CS4110

Programming Languages & Logics

Lecture 19
Continuations

Continuations

In the preceding translations, the control structure of the source
language was translated directly into the corresponding control
structure in the target language.

For example:

Tl . e] = M. T|e]
Tleie.] = Tlei] Tle:]

What can go wrong with this approach?

Continuations

A snippet of code that represents “the rest of the program”

Can be used directly by programmers...

e ..orinprogram transformations by a compiler

Make the control flow of the program explicit

Also useful for defining the meaning of features like
exceptions

Example

Consider the following expression:

(M) ((14+2)+3)+4

Example

Consider the following expression:

(M) ((14+2)+3)+4

If we make all of the continuations explicit, we obtain:

ko = Av. (M. x) v

Example

Consider the following expression:

(M) ((14+2)+3)+4

If we make all of the continuations explicit, we obtain:

ko = Av. (M. x) v
ki = \a. ko (a+4)

Example

Consider the following expression:

(M) ((14+2)+3)+4

If we make all of the continuations explicit, we obtain:
ko = Av. (M. x) v
ki = \a. ko (a+4)

Example

Consider the following expression:

(M) ((14+2)+3)+4

If we make all of the continuations explicit, we obtain:

ko = Av. (M. x) v

ki = \a. ko (a+4)
ky = Ab. ki (b+3)
ky = Xc. ky (c+2)

Example

Consider the following expression:

(M) ((14+2)+3)+4

If we make all of the continuations explicit, we obtain:

ko = Av. (M. x) v

ky = X\a. ko (a+4)
ky = Ab. ki (b+3)
ky = Xc. ky (c+2)

The original expression is equivalent to ks 1, or:

(Ac. (Ab. (Aa. (Av. (M. x) v) (@ + 4)) (b +3)) (c +2)) 1

Example (Continued)

Recall that let x = e in €’ is syntactic sugar for (\x. €’) e.

Hence, we can rewrite the expression with continuations more
succinctly as

letc=1in

letb=c+2in
leta=b+3in
letv=a+4in

(M. x) v

(6]

CPS Transformation

We write CPS[e] k = ... instead of CPS[e] = Xk. ...

We assume that the new variables introduced are “fresh.”

CPS Transformation

CPS[n] k= kn

We write CPS[e] k = ... instead of CPS[e] = Xk. ...

We assume that the new variables introduced are “fresh.”

CPS Transformation

CPS[n] k=kn
CPS[e, + e] k = CPS[es] (An.CPS[es] (Am. k (n + m)))

We write CPS[e] k = ... instead of CPS[e] = Xk. ...

We assume that the new variables introduced are “fresh.”

CPS Transformation

CPS[n] k=kn
CPS[e; + e:] k = CPS[ei] (An.CPS[e,] (Am. k (n+ m)))
CPS|(e1,e)] k = CPS[ei] (Av.CPS[e,] (Aw. k (v, w)))

We write CPS[e] k = ... instead of CPS[e] = Xk. ...

We assume that the new variables introduced are “fresh.”

CPS Transformation

CPS[n]k=kn
CPS[e1 + e:] k = CPS[ei] (An.CPS[e;] (Am. k (n+ m)))
CPS[(e1,e:)] k = CPS[e1] (Av.CPS[ez] (Aw. k (v,w)))
CPS[#1e] k =CPS[e] (Av. k (#1V))

We write CPS[e] k = ... instead of CPS[e] = Xk. ...

We assume that the new variables introduced are “fresh.”

CPS Transformation

CPS[nlk=kn
CPS[e1 + e:] k = CPS[ei] (An.CPS[e;] (Am. k (n+ m)))
CPS[(e1,e:)] k = CPS[e1] (Av.CPS[ez] (Aw. k (v,w)))
CPS[#1e] k =CPS[e] (Av. k (#1V))
CPS[#2e] k = CPS[e] (Av. k (#2V))

We write CPS[e] k = ... instead of CPS[e] = Xk. ...

We assume that the new variables introduced are “fresh.”

CPS Transformation

CPS[nlk=kn
CPS[e1 + e:] k = CPS[ei] (An.CPS[e;] (Am. k (n+ m)))
CPS[(e1,e:)] k = CPS[e1] (Av.CPS[ez] (Aw. k (v,w)))
CPS[#1e] k =CPS[e] (Av. k (#1V))
CPS[#2e] k = CPS[e] (Av. k (#2V))
CPS[x] k = kx

We write CPS[e] k = ... instead of CPS[e] = Xk. ...

We assume that the new variables introduced are “fresh.”

CPS Transformation

CPS[nlk=kn
CPS[e1 + e:] k = CPS[ei] (An.CPS[e;] (Am. k (n+ m)))
CPS[(e1,e:)] k = CPS[e1] (Av.CPS[ez] (Aw. k (v,w)))
CPS[#1e] k =CPS[e] (Av. k (#1V))
CPS[#2e] k = CPS[e] (Av. k (#2V))
CPS[x] k = kx
CPS[x.e] k = k(M. \K'.CPS[e] k')

We write CPS[e] k = ... instead of CPS[e] = Xk. ...

We assume that the new variables introduced are “fresh.”

CPS Transformation

CPS[nlk=kn
CPS[e1 + e:] k = CPS[ei] (An.CPS[e;] (Am. k (n+ m)))
CPS[(e1,e:)] k = CPS[e1] (Av.CPS[ez] (Aw. k (v,w)))
CPS[#1e] k = CPS[e] (Av. k (#1v))
CPS[#2e] k = CPS[e] (Av. k (#2V))
CPS[x] k = kx
CPS[x.e] k = k(M. \K'.CPS[e] k')
CPS[e; e;] k = CPS[ei] (M.CPS[e,] (Av.fvk))

We write CPS[e] k = ... instead of CPS[e] = Xk. ...

We assume that the new variables introduced are “fresh.”

