CS4110

Programming Languages & Logics

Lecture 18
Evaluation Contexts and
Definitional Translation

Review: Call-by-Value

Here are the syntax and CBV semantics of A-calculus:

erx=x|Mel|e e

V= A\x.e
e, — €} e —¢e
e1e, — e e ve = ve'

(M.e)v— e{v/x} y

There are two kinds of rules: congruence rules that specify
evaluation order and computation rules that specify the
“interesting” reductions.

Evaluation Contexts

Evaluation contexts let us separate out these two kinds of rules.

Evaluation Contexts

Evaluation contexts let us separate out these two kinds of rules.

An evaluation context E is an expression with a “hole” init: a
single occurrence of the special symbol [-] in place of a

subexpression.
E:=[]|Ee]|VE

w

Evaluation Contexts

Evaluation contexts let us separate out these two kinds of rules.

An evaluation context E is an expression with a “hole” init: a
single occurrence of the special symbol [-] in place of a

subexpression.
E:=[]|Ee]|VE

We write E[e] to mean the evaluation context E where the hole
has been replaced with the expression e.

Examples

Ey =[] (\x.x)
Ei[Ay.yy]l = (Ay.yy) M.x

Examples

Ey =[] (\x.x)
Ei[Ay.yy]l = (Ay.yy) M.x

E,=(\z2.z2) []
Ex[M. Ay. x| = (Az.22) (Ax. \y. x)

Examples

Ey =[] (Mx.x)
Ei[Ay.yy]l = (Ay.yy) M.x
E,=(\z2.z2) []
Ey[M. Ay x| = (Az.22) (Ax. \y. x)

Es = ([] Mxx) ((Ay-y) (\.y))
Es[A.Ag.fg] = (M. Ag.fg) M. xx) (Ay-y) (Ay.y))

CBV With Evaluation Contexts

With evaluation contexts, we can define the evaluation
semantics for the CBV A-calculus with just two rules: one for
evaluation contexts, and one for S-reduction.

(6]

CBV With Evaluation Contexts

With evaluation contexts, we can define the evaluation
semantics for the CBV A-calculus with just two rules: one for
evaluation contexts, and one for S-reduction.

With this syntax:

E:=[]|Ee|VE
The small-step rules are:

e—¢e
Ele] — E[€']

(M.e)v — e{v/x} B

CBN With Evaluation Contexts

We can also define the semantics of CBN A-calculus with
evaluation contexts.

CBN With Evaluation Contexts

We can also define the semantics of CBN A-calculus with
evaluation contexts.

For call-by-name, the syntax for evaluation contexts is different:

E:=[]|Ee

CBN With Evaluation Contexts

We can also define the semantics of CBN A-calculus with
evaluation contexts.

For call-by-name, the syntax for evaluation contexts is different:
E:=[]|Ee

But the small-step rules are the same:

e—¢e
Ele] — E[€]

(Mx.e) e — e{€e'/x} v

Definitional Translation

We know how to encode Booleans, conditionals, natural
numbers, and recursion in A-calculus.

Can we define a real programming language by translating
everything in it into the A-calculus?

Definitional Translation

We know how to encode Booleans, conditionals, natural
numbers, and recursion in A-calculus.

Can we define a real programming language by translating
everything in it into the A-calculus?

In definitional translation, we define a denotational semantics
where the target is a simpler programming language instead of
mathematical objects.

Multi-Argument A-calculus

Let’s define a version of the A-calculus that allows functions to
take multiple arguments.

e =X| My,X,.e|epe; ... e,

Multi-Argument A-calculus

We can define a CBV operational semantics:

Ex=[]|vo...Vii1Ee€i1 ... €p

e —¢e
Ele] — E[€]

(MX1y oo Xn-€0) Vi oo vy = eo{vi/xi H{va /X2 } .o {va /X0 } P

The evaluation contexts ensure that we evaluate
multi-argument applications ey e; ... e, from left to right.

Definitional Translation

The multi-argument A-calculus isn’t any more expressive that
the pure A-calculus.

10

Definitional Translation

The multi-argument A-calculus isn’t any more expressive that
the pure A-calculus.

We can define a translation 7 -] that takes an expression in the
multi-argument A-calculus and returns an equivalent expression
in the pure A-calculus.

Definitional Translation

The multi-argument A-calculus isn’t any more expressive that
the pure A-calculus.

We can define a translation 7 -] that takes an expression in the
multi-argument A-calculus and returns an equivalent expression
in the pure A-calculus.

TIx] = x
T, - xn-€] = M. .o M, Te]
Tleoere, ... en] = (... ((Teo] Tledd) TTe2l) - -- Tlenl)

This translation curries the multi-argument A-calculus.

Products (Pairs) and Let

Syntax

en=x

| \x. e

|e; e,

| (e1,€2)

| #1e

| #2e

|letx =e;ine;
vi=Mx.e

| (v1,v2)

11

Products (Pairs) and Let

Evaluation Contexts

E:=][]
|Ee
|VE
| (€. e)
[(v,E)
#1E
| #2E

|letx =Eine,

12

Products (Pairs) and Let

Semantics

e—¢e
Ele] — E[€]

(M.e)v — e{v/x} ’

#1(v1,v2) = » #2 (v1,1p) = v,

letx =vine — e{v/x}

13

Products (Pairs) and Let

Translation

TIxl = x
Tl . e] = . T|e]
Tleie] = Tlei] Tle:]
Tl(ew, e)] = (M. \y. M. fxy) Tlei] Tle.]
Tl#1e] = Tle]l (Mx. \y.x)
TI#2¢] = Tlel (5. \y.y)
Tlletx = erine] = (Mx. Te.]) Tei]

14

Laziness

Consider the call-by-name A-calculus...

Syntax
e =X
| €1 6,
| \x. e
vVi=Mx.e
Semantics

e, — €] B
- M. e;) e, — e{e,/x
e1e, — €] e (1)e 1{ex/x}

15

Laziness

Translation
Tl =x(v.y)

Tl . e] = . T|e]
Tl[el 92]] = TI[el]] ()\Z Tl[ez]])

zis not a free variable of e,

16

References

Syntax

en=x
| \x. e
‘eoel

17

References

Syntax

e =X
| Ax.e
| €0 €1
| refe

17

References

Syntax

e =X
| Ax.e
| €0 €1
| refe
| le

17

References

Syntax

e =X
| \x. e
| eoer
| refe
| le
el =€,

17

References

Syntax

e =X
| \x. e
| eoer
| refe
| le
el =€,
| ¢

Vi=M.e

17

References

Syntax

e =X
| \x. e
| eoer
| refe
| le
el =€,
| ¢

Vi=M.e
| ¢

17

References

Evaluation Contexts

E:=[]
|Ee
|VE

18

References

Evaluation Contexts

E:=[]
|Ee
|VE
| ref E

18

References

Evaluation Contexts

E:=[]
|Ee
|VE
| ref E
| 1E

18

References

Evaluation Contexts

E:=[]
|Ee
|VE
| ref E
| 1E
|E:=e

18

References

Evaluation Contexts

18

References

Semantics

(o,€) = (o', €')
(o, E[e]) — (o', E[€])

(o,(Mx.e)v) — (o,e{v/x}) b

¢ & dom(o) o(l)=v
(o,refv) — (o[l — V],) (o, W) — (0o, V)

(0,0 :=V) = (o[l — V],V)

19

References

Translation

...left as an exercise to the reader. ;-)

20

Adequacy

How do we know if a translation is correct?

21

Adequacy

How do we know if a translation is correct?

Every target evaluation should represent a source evaluation...

Definition (Soundness)

Ve € Expg,. if T[e] —4, v/ thenv.e =5 v
and V' equivalent to v

21

Adequacy

How do we know if a translation is correct?

Every target evaluation should represent a source evaluation...

Definition (Soundness)

Ve € Expg,. if T[e] —4, v/ thenv.e =5 v
and V' equivalent to v

...and every source evaluation should have a target evaluation:

Definition (Completeness)

Ve € Expy.. ife = vthen 3V'. Tle] —¢, v
and V' equivalent to v

21

