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Programming Languages & Logics

Lecture 18
Evaluation Contexts and
Definitional Translation



Review: Call-by-Value

Here are the syntax and CBV semantics of A-calculus:

erx=x|Mel|e e

V= A\x.e
e, — €} e —¢e
e1e, — e e ve = ve'

(M.e)v— e{v/x} y

There are two kinds of rules: congruence rules that specify
evaluation order and computation rules that specify the
“interesting” reductions.
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An evaluation context E is an expression with a “hole” init: a
single occurrence of the special symbol [-] in place of a

subexpression.
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Evaluation Contexts

Evaluation contexts let us separate out these two kinds of rules.

An evaluation context E is an expression with a “hole” init: a
single occurrence of the special symbol [-] in place of a

subexpression.
E:=[]|Ee]|VE

We write E[e] to mean the evaluation context E where the hole
has been replaced with the expression e.
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Examples

Ey =[] (Mx.x)
Ei[Ay.yy]l = (Ay.yy) M.x
E,=(\z2.z2) []
Ey[M. Ay x| = (Az.22) (Ax. \y. x)

Es = ([] Mxx) ((Ay-y) (\.y))
Es[A.Ag.fg] = (M. Ag.fg) M. xx) (Ay-y) (Ay.y))



CBV With Evaluation Contexts

With evaluation contexts, we can define the evaluation
semantics for the CBV A-calculus with just two rules: one for
evaluation contexts, and one for S-reduction.
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CBV With Evaluation Contexts

With evaluation contexts, we can define the evaluation
semantics for the CBV A-calculus with just two rules: one for
evaluation contexts, and one for S-reduction.

With this syntax:

E:=[]|Ee|VE
The small-step rules are:

e—¢e
Ele] — E[€']

(M.e)v — e{v/x} B
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CBN With Evaluation Contexts

We can also define the semantics of CBN A-calculus with
evaluation contexts.

For call-by-name, the syntax for evaluation contexts is different:
E:=[]|Ee

But the small-step rules are the same:

e—¢e
Ele] — E[€]

(Mx.e) e — e{€e'/x} v



Definitional Translation

We know how to encode Booleans, conditionals, natural
numbers, and recursion in A-calculus.

Can we define a real programming language by translating
everything in it into the A-calculus?



Definitional Translation

We know how to encode Booleans, conditionals, natural
numbers, and recursion in A-calculus.

Can we define a real programming language by translating
everything in it into the A-calculus?

In definitional translation, we define a denotational semantics
where the target is a simpler programming language instead of
mathematical objects.



Multi-Argument A-calculus

Let’s define a version of the A-calculus that allows functions to
take multiple arguments.

e =X| My, ....X,.e|epe; ... e,



Multi-Argument A-calculus

We can define a CBV operational semantics:

Ex=[]|vo...Vii1Ee€i1 ... €p

e —¢e
Ele] — E[€]

(MX1y oo Xn-€0) Vi oo vy = eo{vi/xi H{va /X2 } .o {va /X0 } P

The evaluation contexts ensure that we evaluate
multi-argument applications ey e; ... e, from left to right.



Definitional Translation

The multi-argument A-calculus isn’t any more expressive that
the pure A-calculus.
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Definitional Translation

The multi-argument A-calculus isn’t any more expressive that
the pure A-calculus.

We can define a translation 7 -] that takes an expression in the
multi-argument A-calculus and returns an equivalent expression
in the pure A-calculus.

TIx] = x
T, - xn-€] = M. .o M, Te]
Tleoere, ... en] = (... ((Teo] Tledd) TTe2l) - -- Tlenl)

This translation curries the multi-argument A-calculus.



Products (Pairs) and Let

Syntax

en=x

| \x. e

|e; e,

| (e1,€2)

| #1e

| #2e

|letx =e;ine;
vi=Mx.e

| (v1,v2)
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Products (Pairs) and Let

Evaluation Contexts

E:=][]
|Ee
|VE
| (€. e)
[ (v,E)
#1E
| #2E

|letx =Eine,
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Products (Pairs) and Let

Semantics

e—¢e
Ele] — E[€]

(M.e)v — e{v/x} ’

#1(v1,v2) = » #2 (v1,1p) = v,

letx =vine — e{v/x}
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Products (Pairs) and Let

Translation

TIxl = x
Tl . e] = . T|e]
Tleie] = Tlei] Tle:]
Tl(ew, e)] = (M. \y. M. fxy) Tlei] Tle.]
Tl#1e] = Tle]l (Mx. \y.x)
TI#2¢] = Tlel (5. \y.y)
Tlletx = erine] = (Mx. Te.]) Tei]
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Laziness

Consider the call-by-name A-calculus...

Syntax
e =X
| €1 6,
| \x. e
vVi=Mx.e
Semantics

e, — €] B
- M. e;) e, — e{e,/x
e1e, — €] e ( 1)e 1{ex/x}
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Laziness

Translation
Tl =x(v.y)

Tl . e] = . T|e]
Tl[el 92]] = TI[el]] ()\Z Tl[ez]])

zis not a free variable of e,
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Syntax

en=x
| \x. e
‘eoel
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References

Semantics

(o,€) = (o', €')
(o, E[e]) — (o', E[€])

(o,(Mx.e)v) — (o,e{v/x}) b

¢ & dom(o) o(l)=v
(o,refv) — (o[l — V], ) (o, W) — (0o, V)

(0,0 :=V) = (o[l — V],V)
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References

Translation

...left as an exercise to the reader. ;-)
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Adequacy

How do we know if a translation is correct?
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How do we know if a translation is correct?

Every target evaluation should represent a source evaluation...

Definition (Soundness)
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Adequacy

How do we know if a translation is correct?

Every target evaluation should represent a source evaluation...

Definition (Soundness)

Ve € Expg,. if T[e] —4, v/ thenv.e =5 v
and V' equivalent to v

...and every source evaluation should have a target evaluation:

Definition (Completeness)

Ve € Expy.. ife = vthen 3V'. Tle] —¢, v
and V' equivalent to v

21



