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De Bruijn, Combinators



de Bruijn Notation

Another way to avoid the tricky issues with substitution is to use
a nameless representation of terms.

e ::= n | λ.e | e e

Abstractions have lost their variables!

Variables are replaced with numerical indices!
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Examples

Here are some terms written in standard and de Bruijn notation:

Standard de Bruijn
λx. x λ. 0
λz. z

λ. 0
λx. λy. x λ. λ. 1
λx. λy. λs. λz. x s (y s z) λ. λ. λ. λ. 3 1 (2 1 0)
(λx. x x) (λx. x x) (λ. 0 0) (λ. 0 0)
(λx. λx. x) (λy. y) (λ. λ. 0) (λ. 0)
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Free variables

To represent a λ‑expression that contains free variables in de
Bruijn notation, we need a way to map the free variables to
integers.

We will work with respect to a map Γ from variables to integers
called a context.

Examples:
Suppose that Γmaps x to 0 and y to 1.
• Representation of x y is 0 1
• Representation of λz. x y z λ. 1 2 0
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Shifting

To define substitution, we will need an operation that shifts by i
the variables above a cutoff c:

↑ic (n) =

{
n if n < c
n+ i otherwise

↑ic (λ.e) = λ.(↑ic+1 e)
↑ic (e1 e2) = (↑ic e1) (↑ic e2)

The cutoff c keeps track of the variables that were bound in the
original expression and so should not be shifted.

The cutoff is 0 initially.
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Substitution

Nowwe can define substitution:

n{e/m} =

{
e if n = m
n otherwise

(λ.e1){e/m} = λ.e1{(↑10 e)/m+ 1}
(e1 e2){e/m} = (e1{e/m}) (e2{e/m})

The β rule for terms in de Bruijn notation is just:

(λ.e1) e2 → ↑−1
0 (e1{↑10 e2/0})

β
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Example

Consider the term (λu.λv.u x) ywith respect to a context where
Γ(x) = 0 and Γ(y) = 1.

(λ.λ.1 2) 1
→ ↑−1

0 ((λ.1 2){(↑10 1)/0})
= ↑−1

0 ((λ.1 2){2/0})
= ↑−1

0 λ.((1 2){(↑10 2)/(0+ 1)})
= ↑−1

0 λ.((1 2){3/1})
= ↑−1

0 λ.(1{3/1}) (2{3/1})
= ↑−1

0 λ.3 2
= λ.2 1

which, in standard notation (with respect to Γ), is the same as
λv.y x.
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Combinators

Another way to avoid the issues having to do with free and
bound variable names in the λ‑calculus is to work with closed
expressions or combinators.

With just three combinators, we can encode the entire
λ‑calculus.

K = λx.λy. x
S = λx.λy.λz. x z (y z)
I = λx. x
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Combinators

We can even define independent evaluation rules that don’t
depend on the λ‑calculus at all.

Behold the “SKI‑calculus”:

K e1 e2 → e1
S e1 e2 e3 → e1 e3 (e2 e3)
I e → e

You would never want to program in this language—it doesn’t
even have variables!—but it’s exactly as powerful as the
λ‑calculus.
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Bracket Abstraction

The function [x] that takes a combinator termM and builds
another term that behaves like λx.M:

[x] x = I
[x] N = K N where x ̸∈ fv(N)

[x] N1 N2 = S ([x] N1) ([x] N2)

The idea is that ([x]M) N → M{N/x} for every term N.
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Bracket Abstraction

We then define a function (e)∗ that maps a λ‑calculus
expression to a combinator term:

(x)∗ = x
(e1 e2)∗ = (e1)∗ (e2)∗
(λx.e)∗ = [x] (e)∗
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Example

As an example, the expression λx.λy. x is translated as follows:

(λx.λy. x)∗
= [x] (λy. x)∗
= [x] ([y] x)
= [x] (K x)
= (S ([x] K) ([x] x))
= S (K K) I

No variables in the final combinator term!
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Example

We can check that this behaves the same as our original
λ‑expression by seeing how it evaluates when applied to
arbitrary expressions e1 and e2.

(λx.λy. x) e1 e2
→ (λy. e1) e2
→ e1

and
(S (K K) I) e1 e2

→ (K K e1) (I e1) e2
→ K e1 e2
→ e1
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SKI Without I

Looking back at our definitions...

K e1 e2 → e1
S e1 e2 e3 → e1 e3 (e2 e3)
I e → e

...I isn’t strictly necessary. It behaves the same as S K K.

Our example becomes:

S (K K) (S K K)
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One Step Farther

If two combinators are enough, how about one?

ι ≜ λf. f S K

Then:

I =β ιι
K =β ι(ι(ιι))
S =β ι(ι(ι(ιι)))

In this “language,” programs only differ in the shape of the tree!
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