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Fixed-Point Combinators
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Recursive Functions

How would we write recursive functions, like factorial?

We’d like to write it like this...

FACT = An.IF (ISZERO n) 1 (TIMES n (FACT (PRED n)))

In slightly more readable notation thisis...

FACT = An.if n = O then 1 else n x FACT (n — 1)

...but thisis an equation, not a definition!
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Recursion removal trick

We can perform a “trick” to define a function FACT that satisfies
the recursive equation on the previous slide.

Define a new function FACT' that takes a function fas an
argument. Then, for “recursive” calls, it uses f f:

FACT' £ \f. An.if n = O then lelsen x ((ff) (n — 1))
Then define FACT as FACT applied to itself:

FACT £ FACT FACT
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Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT FACT') 3
= ((M.An.if n = Othen lelse n x ((ff) (n —1))) FACT') 3
— (An.if n = O then 1 else n x ((FACT FACT') (n —1))) 3
— if 3 = 0then lelse 3 x ((FACT FACT') (3 —1))
— 3 x ((FACT' FACT') (3 — 1))
=3 x (FACT (3 1))
— ...
—3x2x1x1
—*6
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Fixed point combinators

Our “trick” requires following human-readable instructions.
Write a different function f that takes itself as an argument and
uses self-application for recursive calls, and then define fasf f.

There is another way: fixed points!

Consider factorial again. It is a fixed point of the following:
G2 M. \n.ifn=0thenlelsen x (f(n — 1))

Recall that if g if a fixed point of G, then G g = g. To see that any
fixed point g is a real factorial function, try evaluating it:
95=1(69)5
—*5x (g4)
=5x((6g)4)



Fixed point combinators

How can we generate the fixed point of G?

In denotational semantics, finding fixed points took a lot of
math. In the A-calculus, we just need a suitable combinator...
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Y Combinator

The (infamous) Y combinator is defined as
Y £ M. (. F(xx)) (Ax. F(xx))

We say that Y is a fixed point combinator because Y fis a fixed
point of f (for any lambda term f).

What happens when we evaluate Y G under CBV?
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To avoid this issue, we’ll use a slight variant of the Y combinator,
called Z, which is easier to use under CBV.

ZE M. (X F(Oy.xxy)) (M. f(Ay. xxy))
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Let’s see Z in action, on our function G.

44

FACT
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Let’s see Z in action, on our function G.
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Example

Let’s see Z in action, on our function G.

FACT
ZG
(M. (M f(Ay.xxy)) (M F(Ay.xxy))) G
(M. G (\y.xxy)) (M. G (\y.xxy))
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Other fixed point combinators

There are many (indeed infinitely many) fixed-point
combinators. Here’s a cute one:

Y2 (LLLLLLLLLLLLLLLLLLLLLLLLLL)

where

L £ \abcdefghijklmnopgstuvwxyzr.
(r(thisisafixedpointcombinator))
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Turing’s Fixed Point Combinator

To gain some more intuition for fixed point combinators, let’s
derive a combinator © originally discovered by Turing.

We know that © fis a fixed point of f, so we have

Of=f(O0.

We can write the following recursive equation:

© = M.f(O1)

Now use the recursion removal trick:

O = At Mf(ttf)
S) e e

(1> 11
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6 Example

FACT=06G
— (AL M F(EEA) (AL F(tEH)) G
5 (M F(OE M F(EER) (MM F(EED) ) G
5 G((\LAEF(EtH) (AL (L) G)
= G(96)
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6 Example

FACT=0G
= (AL MF(tth)) (MM f(ttF))G
— (MF((NEXLE(EED)) (ML f(tEh) )G
— G (AL f(ttf)) (AL NLf(t ) G)
=G(006)
= (M. An.ifn=0thenlelsen x (f(n —1))) (©G)
— An.ifn=0thenlelsen x ((©G) (n—1))
= An.if n = O then 1 else n x (FACT (n — 1))



