CS4110

Programming Languages & Logics

Lecture 16
Fixed-Point Combinators



Termination in the \-calculus

We have encoded lots of useful programming functionality that
produces values.

Does every closed A-term eventually terminate under CBN
evaluation?

V closedterme. 3e’. e = * e A A 7



Termination in the \-calculus

We have encoded lots of useful programming functionality that
produces values.

Does every closed A-term eventually terminate under CBN
evaluation?

V closedterme. 3e’. e = * e A A 7

No!

Q = (Mxx)(Mxxx)



Termination in the \-calculus

We have encoded lots of useful programming functionality that
produces values.

Does every closed A-term eventually terminate under CBN
evaluation?

V closedterme. 3e’. e = * e A A 7

No!



Recursive Functions

How would we write recursive functions, like factorial?



Recursive Functions

How would we write recursive functions, like factorial?
We’d like to write it like this...

FACT = An.IF (ISZERO n) 1 (TIMES n (FACT (PRED n)))

w



Recursive Functions

How would we write recursive functions, like factorial?

We’d like to write it like this...

FACT = An.IF (ISZERO n) 1 (TIMES n (FACT (PRED n)))

In slightly more readable notation thisis...

FACT = An.if n = O then 1 else n x FACT (n — 1)

...but thisis an equation, not a definition!



Recursion removal trick

We can perform a “trick” to define a function FACT that satisfies
the recursive equation on the previous slide.



Recursion removal trick

We can perform a “trick” to define a function FACT that satisfies
the recursive equation on the previous slide.

Define a new function FACT' that takes a function fas an
argument. Then, for “recursive” calls, it uses f f:

FACT' £ \f. An.if n = O then lelsen x ((ff) (n — 1))



Recursion removal trick

We can perform a “trick” to define a function FACT that satisfies
the recursive equation on the previous slide.

Define a new function FACT' that takes a function fas an
argument. Then, for “recursive” calls, it uses f f:

FACT' £ \f. An.if n = O then lelsen x ((ff) (n — 1))
Then define FACT as FACT applied to itself:

FACT £ FACT FACT



Example

Let’s try evaluating FACT on 3...

FACT 3



Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT FACT') 3



Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT FACT') 3
= ((M.An.if n = Othen lelse n x ((ff) (n —1))) FACT') 3



Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT FACT') 3
= ((M.An.if n = Othen lelse n x ((ff) (n —1))) FACT') 3
— (An.if n = O then 1 else n x ((FACT FACT') (n —1))) 3

(6]



Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT FACT') 3
= ((M.An.if n = Othen lelse n x ((ff) (n —1))) FACT') 3
— (An.if n = O then 1 else n x ((FACT FACT') (n —1))) 3
— if 3 = 0then lelse 3 x ((FACT FACT') (3 —1))

(6]



Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT FACT') 3
= ((M.An.if n = Othen lelse n x ((ff) (n —1))) FACT') 3
— (An.if n = O then 1 else n x ((FACT FACT') (n —1))) 3
— if 3 = 0then lelse 3 x ((FACT FACT') (3 —1))
— 3 x ((FACT' FACT') (3 — 1))

(6]



Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT FACT') 3
= ((M.An.if n = Othen lelse n x ((ff) (n —1))) FACT') 3
— (An.if n = O then 1 else n x ((FACT FACT') (n —1))) 3
— if 3 = 0then lelse 3 x ((FACT FACT') (3 —1))
— 3 x ((FACT' FACT') (3 — 1))
=3 x (FACT (3 1))

(6]



Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT FACT') 3
= ((M.An.if n = Othen lelse n x ((ff) (n —1))) FACT') 3
— (An.if n = O then 1 else n x ((FACT FACT') (n —1))) 3
— if 3 = 0then lelse 3 x ((FACT FACT') (3 —1))
— 3 x ((FACT' FACT') (3 — 1))
=3 x (FACT (3 1))
— ...
—3x2x1x1



Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT FACT') 3
= ((M.An.if n = Othen lelse n x ((ff) (n —1))) FACT') 3
— (An.if n = O then 1 else n x ((FACT FACT') (n —1))) 3
— if 3 = 0then lelse 3 x ((FACT FACT') (3 —1))
— 3 x ((FACT' FACT') (3 — 1))
=3 x (FACT (3 1))
— ...
—3x2x1x1
—*6



Fixed point combinators

Our “trick” requires following human-readable instructions.
Write a different function f that takes itself as an argument and
uses self-application for recursive calls, and then define fasf f.



Fixed point combinators

Our “trick” requires following human-readable instructions.
Write a different function f that takes itself as an argument and
uses self-application for recursive calls, and then define fasf f.

There is another way: fixed points!



Fixed point combinators

Our “trick” requires following human-readable instructions.
Write a different function f that takes itself as an argument and
uses self-application for recursive calls, and then define fasf f.

There is another way: fixed points!

Consider factorial again. It is a fixed point of the following:

G2 M. \n.ifn=0thenlelsen x (f(n — 1))



Fixed point combinators

Our “trick” requires following human-readable instructions.
Write a different function f that takes itself as an argument and
uses self-application for recursive calls, and then define fasf f.

There is another way: fixed points!

Consider factorial again. It is a fixed point of the following:
G2 M. \n.ifn=0thenlelsen x (f(n — 1))

Recall that if g if a fixed point of G, then G g = g. To see that any
fixed point g is a real factorial function, try evaluating it:

g5=(Gg)5



Fixed point combinators

Our “trick” requires following human-readable instructions.
Write a different function f that takes itself as an argument and
uses self-application for recursive calls, and then define fasf f.

There is another way: fixed points!

Consider factorial again. It is a fixed point of the following:
G2 M. \n.ifn=0thenlelsen x (f(n — 1))

Recall that if g if a fixed point of G, then G g = g. To see that any
fixed point g is a real factorial function, try evaluating it:
95=(Gg)5
—*5x (g4)



Fixed point combinators

Our “trick” requires following human-readable instructions.
Write a different function f that takes itself as an argument and
uses self-application for recursive calls, and then define fasf f.

There is another way: fixed points!

Consider factorial again. It is a fixed point of the following:
G2 M. \n.ifn=0thenlelsen x (f(n — 1))

Recall that if g if a fixed point of G, then G g = g. To see that any
fixed point g is a real factorial function, try evaluating it:
95=1(69)5
—*5x (g4)
=5x((6g)4)



Fixed point combinators

How can we generate the fixed point of G?

In denotational semantics, finding fixed points took a lot of
math. In the A-calculus, we just need a suitable combinator...



Y Combinator

The (infamous) Y combinator is defined as
Y £ M. (. F(xx)) (Ax. F(xx))

We say that Y is a fixed point combinator because Y fis a fixed
point of f (for any lambda term f).



Y Combinator

The (infamous) Y combinator is defined as
Y £ M. (. F(xx)) (Ax. F(xx))

We say that Y is a fixed point combinator because Y fis a fixed
point of f (for any lambda term f).

What happens when we evaluate Y G under CBV?



Z Combinator

To avoid this issue, we’ll use a slight variant of the Y combinator,
called Z, which is easier to use under CBV.



Z Combinator

To avoid this issue, we’ll use a slight variant of the Y combinator,
called Z, which is easier to use under CBV.

ZE M. (X F(Oy.xxy)) (M. f(Ay. xxy))



Example

Let’s see Z in action, on our function G.

FACT

10



Example

Let’s see Z in action, on our function G.

FACT
= ZG

10



Example

Let’s see Z in action, on our function G.

FACT
= ZG
= (M (M f(\y.xxy)) (M f(Ay.xxy))) G

10



Example

Let’s see Z in action, on our function G.

FACT
= ZG
(M. (M f(Ay.xxy)) (M F(Ay.xxy))) G
= (MG xxy)) (M. G (\y.xxy))

10



Example

Let’s see Z in action, on our function G.

FACT

ZG

(M. (M f(Ay.xxy)) (M F(Ay.xxy))) G
(M. G (\y.xxy)) (M. G (\y.xxy))

G (AY. (MG (Ay.xxy)) (M.G(\y.xxYy))y)

4L

10



Example

Let’s see Z in action, on our function G.

44

FACT

ZG

(M. (M f(Ay.xxy)) (M F(Ay.xxy))) G

(M. G (\y.xxy)) (M. G (\y.xxy))

G (AY. (MG (Ay.xxy)) (M.G(\y.xxYy))y)

(M. An.ifn=0then1lelsen x (f(n —1)))
(A (MG (Ay.xxy)) (M. G (Ay.xxy)) y)

10



Example

Let’s see Z in action, on our function G.

FACT
ZG
(M. (M f(Ay.xxy)) (M F(Ay.xxy))) G
(M. G (\y.xxy)) (M. G (\y.xxy))
G (A (MG (A\y.xxy)) (MG (\y.xxy))y)
(M. An.ifn=0then1lelsen x (f(n —1)))
(Ay- (.G (Ay-xxy)) (M. G (Ay.xxY)) y)

An.if n = 0then1

elsen x ((Ay. (M. G (\y.xxy)) (Mx.G (A\y.xxy))y) (n — 1))

44

d



Example

Let’s see Z in action, on our function G.

FACT
ZG
(M. (M f(Ay.xxy)) (M F(Ay.xxy))) G
(M. G (\y.xxy)) (M. G (\y.xxy))
G (AY. (MG (Ay.xxy)) (M.G(\y.xxYy))y)
(M. An.ifn=0then1lelsen x (f(n —1)))
(Ay- (.G (Ay-xxy)) (M. G (Ay.xxY)) y)

An.if n = 0then 1

elsen x ((Ay. (M. G (\y.xxy)) (Mx.G (A\y.xxy))y) (n — 1))
An.ifn=0thenlelsen x (\y.(ZG)y)(n—1)

44

d

|
IS



Example

Let’s see Z in action, on our function G.

FACT
ZG
(M. (M f(Ay.xxy)) (M F(Ay.xxy))) G
(M. G (\y.xxy)) (M. G (\y.xxy))
G (A (MG (A\y.xxy)) (MG (\y.xxy))y)
(M. An.ifn=0then1lelsen x (f(n —1)))
(Ay- (.G (Ay-xxy)) (M. G (Ay.xxY)) y)

An.if n = 0then 1

else n x ((Ay. (M. G (Ay.xxy)) (M. G (Ay.xxy)) y) (n — 1))
An.if n =0thenlelsen x (\y.(ZG) )(n 1)
An.ifn=0thenlelsen x ((ZG) (n—1))

44

d

i1l
=

IS



Example

Let’s see Z in action, on our function G.

FACT
ZG
(M. (M f(Ay.xxy)) (M F(Ay.xxy))) G
(M. G (\y.xxy)) (M. G (\y.xxy))
G (AY. (MG (Ay.xxy)) (M.G(\y.xxYy))y)
(M. An.ifn=0then1lelsen x (f(n —1)))
(Ay- (.G (Ay-xxy)) (M. G (Ay.xxY)) y)

An.if n = 0then 1

elsen x ((Ay. (M. G (\y.xxy)) (Mx.G (A\y.xxy))y) (n — 1))
An.ifn=0thenlelsen x (\y.(ZG)y)(n
An.ifn=0thenlelsen x ((ZG) (n—1
An.if n =0thenlelsen x (FACT(n —1

44

d

i1l
=

IS

N—r
N— —



Other fixed point combinators

There are many (indeed infinitely many) fixed-point
combinators. Here’s a cute one:

Y2 (LLLLLLLLLLLLLLLLLLLLLLLLLL)

where

L £ \abcdefghijklmnopgstuvwxyzr.
(r(thisisafixedpointcombinator))

11



Turing’s Fixed Point Combinator

To gain some more intuition for fixed point combinators, let’s
derive a combinator © originally discovered by Turing.

12



Turing’s Fixed Point Combinator

To gain some more intuition for fixed point combinators, let’s
derive a combinator © originally discovered by Turing.

We know that © fis a fixed point of f, so we have

Of=f(O0.

12



Turing’s Fixed Point Combinator

To gain some more intuition for fixed point combinators, let’s
derive a combinator © originally discovered by Turing.

We know that © fis a fixed point of f, so we have

Of=f(O0.

We can write the following recursive equation:

© = M.f(O1)



Turing’s Fixed Point Combinator

To gain some more intuition for fixed point combinators, let’s
derive a combinator © originally discovered by Turing.

We know that © fis a fixed point of f, so we have

Of=f(O0.

We can write the following recursive equation:

© = M.f(O1)

Now use the recursion removal trick:

O = At Mf(ttf)
S) e e

(1> 11



6 Example

FACT=0G

13



6 Example

FACT=06G
— (AL M F(EEA) (AL F(tEH)) G

13



6 Example

FACT=06G
— (AL M F(EEA) (AL F(tEH)) G
5 (M F(OE M F(EER) (MM F(EED) ) G

13



6 Example

FACT=06G
— (AL M F(EEA) (AL F(tEH)) G
5 (M F(OE M F(EER) (MM F(EED) ) G
5 G((\LAEF(EtH) (AL (L) G)

13



6 Example

FACT=06G
— (AL M F(EEA) (AL F(tEH)) G
5 (M F(OE M F(EER) (MM F(EED) ) G
5 G((\LAEF(EtH) (AL (L) G)
= G(96)

13



6 Example

FACT=0G
= (AL MF(tth)) (MM f(ttF))G
— (MF((NEXLE(EED)) (ML f(tEh) )G
— G (AL f(ttf)) (AL NLf(t ) G)
=G(006)
= (M. An.ifn=0thenlelsen x (f(n —1))) (©G)
— An.ifn=0thenlelsen x ((©G) (n—1))
= An.if n = O then 1 else n x (FACT (n — 1))



