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Semantics

Question: What is the meaning of a program?

Answer: We could execute the program using an interpreter or a
compiler, or we could consult a manual...

®@00 nate — bash — 37x9 ™ AB.T Void

hello hello.c |l The dnonexistent) value of a void object may not be used in any way, and neither
explicit nor implicit conversion to any non-void type may be applied. Because a void
expression denotes a nonexistent value, such an expression may be used only where the
value is not required, for example as an expression statement (§A9.2) or as the left
operand of a comma operator (FA7.18).
An expression may be converted to type void by a cast. For example, a void cast
documents the discarding of the value of a function call used as an expression statement.
void did not appear in the first edition of this book, but has become common
since.

...but none of these is a satisfactory solution.



Formal Semantics

Three Approaches

e Operational (0,€) — (d’,€)
> Model program by execution on abstract machine
> Useful forimplementing compilers and interpreters

e Denotational: [e]

» Model program as mathematical objects
» Useful for theoretical foundations

e Axiomatic F{¢}e{v}

> Model program by the logical formulas it obeys
» Useful for proving program correctness

w



Arithmetic Expressions
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A language of integer arithmetic expressions with assignment.

Metavariables:
x,y,z € Var

nm < Int
e ¢ Exp

BNF Grammar:
e =X
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What expression does the string “1 +2 * 3” describe?

There are two possible parse trees:
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Ambiguity

What expression does the string “1 +2 * 3” describe?

There are two possible parse trees:

1/\ /\3
/N /N
2 3 1 2

In this course, we will distinguish abstract syntax from concrete
syntax, and focus primarily on abstract syntax (using
conventions or parentheses at the concrete level to
disambiguate as needed).
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BNF Grammar:
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Representing Expressions

BNF Grammar:
e =X
| n
|e+e;
|e1*e,
|x:=e;; €

OCaml:

type exp = Var of string
| Intofint
| Add of exp * exp
| Mul of exp * exp
| Assgn of string * exp * exp

Example: Mul(Int 2, Add(Var "foo”, Int 1))



Representing Expressions

BNF Grammar:
er=x
|n
| e,+e;
| €1 %6y
|X =€, 6

Java:

abstract class Expr{}

class Var extends Expr { String name; ... }

class Int extends Expr {intval; ... }

class Add extends Expr { Expr expl, exp2; ... }

class Mul extends Expr { Expr expl, exp2; ... }

class Assgn extends Expr { String var, Expr expl, exp2; ... }

Example: new Mul(new Int(2), new Add(new Var(”foo”), new Int(1)))
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Quiz

e 7+(4%2)evaluatesto 15
e j:=6+1; 2*3x%jevaluatesto 42
e x+ 1 evaluates to error?

The rest of this lecture will make these intuitions precise...



Mathematical Preliminaries



Binary Relations

The product of two sets A and B, written A x B, contains all
ordered pairs (a,b) witha € Aand b € B.
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Binary Relations

The product of two sets A and B, written A x B, contains all
ordered pairs (a,b) witha € Aand b € B.

A binary relation on Aand Bis just a subset R C A x B.

Given a binary relation R C A x B, the set A is called the domain
of R and Bis called the range (or codomain) of R.

Some Important Relations

e empty: ()

e total: Ax B

e identityon A: {(a,a) | a € A}.

e compositionR; S: {(a,c)|3b.(a,b) € RA(b,c) € S}



Functions

A (total) function fis a binary relation f C A x B with the property
that every a € Ais related to exactly one b € B.
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Functions

A (total) function fis a binary relation f C A x B with the property
that every a € Ais related to exactly one b € B.

When fis a function, we usually write f : A — B instead of
fCAxB.

The image of fis the set of elements b € B that are mapped to by
at least one a € A. Formally:

image(f) = {f(a) | a € A}



Some Important Functions

Given two functionsf: A — Band g : B — C, the composition of
fand g is defined by: (g o f)(x) = g(f(x)) Note order!
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Some Important Functions

Given two functionsf: A — Band g : B — C, the composition of
fand g is defined by: (g o f)(x) = g(f(x)) Note order!

A partial functionf: A — Bis a total functionf: A — Bon aset
A" C A. The notation dom(f) refers to A'.

Afunctionf: A — Bis said to be injective (or one-to-one) if and
onlyif a; # a, implies f(a;) # f(a,).

Afunctionf: A — Bis said to be surjective (or onto) if and only if
the image of fis B.



Operational Semantics



Overview

An operational semantics describes how a program executes on
some abstract (imaginary) machine.
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Overview

An operational semantics describes how a program executes on
some abstract (imaginary) machine.

A small-step operational semantics describes how such an
execution proceeds from configuration to configuration:
(0,€) = (0’ €)

For our language, a configuration (o, €) is a pair of:

e astore o that records the values of variables,

e and the expression e being evaluated.

More formally:

Store £ Var — Int
Config = Store x Exp

(A store is a partial function from variables to integers.)
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Operational Semantics

The small-step operational semantics itself is a relation on
configurations—i.e., a subset of Config x Config.

Notation: (o, e) — (0’,¢€’)
which means ((o,e), (o', €')) € “—=".

Question: How should we define this relation? Remember that
there are an infinite number of configurations and possible
steps!



Inference Rules

Answer: Define it inductively, using inference rules:

premise, premise,

- NAME
conclusion
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Inference Rules

Answer: Define it inductively, using inference rules:

premise, premise, :
NAME

conclusion

An inference rule defines an implication: if all the premises hold,
then the conclusion also holds.

Formally, “—” is the smallest relation that is closed under all the
inference rules.

16



Variables

n = o(x)

(o,x) = (o, n)

VAR

17



Addition

p=m+n

{o;n+m) — (o,p)

ADD
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Addition

p=m+n

A
(o.n+m) = (o.p)

o,e1) — (0, €]
(.0 > (e

(o,e1+€) — (o, €] +e;)
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Addition

p=m+n
(o,n+m) — (o,p)

ADD

o,e1) — (0, €]
(.0 > (e

(0,61+€2) — (0, €] +6;)

(0,€7) = (0, €))

RADD
(o,n+e3) — (o', n+e€))

18



Multiplication

p=mxn

(o,m*n) — (o, p)

MuL

19



Multiplication

=mXn
P MuL

(o,m*n) — (o,p)

(o,e1) = (d',€))

LMuL
(o,61%€,) — (0, €} *ey)

(0,85) = (o', €)

RMuL
<U> n* e2> — <0J7 nx* e/2>

19



Assignment

o' =olx— n]
ASSGN

(o,x:=n; €;) — (o', €,)

Notation: o[x — n] is a new (partial) function that mostly
behaves like o, except that it maps x to n.
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Assignment

o' =olx— n]
ASSGN

(o,x:=n; €;) — (o', €,)

Notation: o[x — n] is a new (partial) function that mostly
behaves like o, except that it maps x to n.

(0,€1) = (o', €])
ASSGN1

(o,x:=ey; ) — (0, x:=¢€]; &)
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Operational Semantics

n= !/ !/
U(X) VAR <Uv el> — <O—/ae/1> LADD
(o,%) = (o, n) (o,e1+€) — (0, €] +e3)
,€2) — /, ; =
(9, €2) <U, &) — RADD P=MEN oo
(o,n+ey) = (o', n+e}) (o,n+m) — (o,p)

<U’ e1> — <J/ve/l> <U> 6’2> — <0'/ae£>

LMuL RMuL
(o,e1%e3) — (0, €] *e;) (o,n*ey) — (o', nxe))
=mxn el — (o', e
P MuL (,2) <U, Y - ASSGN1
(o,m*n) — (o,p) (o,x:=e1; €) = (o', x:=¢€]; €)

o' =ox—n]
ASSGN

(o,x:=n; €)) — (o', €5)
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Multi-Step Evaluation

We can define the multi-step evaluation relation, written —*, as
the reflexive and transitive closure of the small-step evaluation

relation.

22



