CS4110

Programming Languages & Logics

Lecture 2
Introduction to Semantics



Semantics

Question: What is the meaning of a program?



Semantics

Question: What is the meaning of a program?

Answer: We could execute the program using an interpreter or a
compiler, or we could consult a manual...

®@00 nate — bash — 37x9 ™ AB.T Void

hello hello.c |l The dnonexistent) value of a void object may not be used in any way, and neither
explicit nor implicit conversion to any non-void type may be applied. Because a void
expression denotes a nonexistent value, such an expression may be used only where the
value is not required, for example as an expression statement (§A9.2) or as the left
operand of a comma operator (FA7.18).
An expression may be converted to type void by a cast. For example, a void cast
documents the discarding of the value of a function call used as an expression statement.
void did not appear in the first edition of this book, but has become common
since.

...but none of these is a satisfactory solution.



Formal Semantics

Three Approaches

e Operational (0,€) — (d’,€)
> Model program by execution on abstract machine
> Useful forimplementing compilers and interpreters

e Denotational: [e]

» Model program as mathematical objects
» Useful for theoretical foundations

e Axiomatic F{¢}e{v}

> Model program by the logical formulas it obeys
» Useful for proving program correctness

w



Arithmetic Expressions



Syntax

Alanguage of integer arithmetic expressions with assignment.



Syntax

A language of integer arithmetic expressions with assignment.

Metavariables:
x,y,z € Var

nm < Int
e ¢ Exp



Syntax

A language of integer arithmetic expressions with assignment.

Metavariables:
x,y,z € Var

nm < Int
e ¢ Exp

BNF Grammar:
e =X



Ambiguity

What expression does the string “1 +2 * 3” describe?



Ambiguity

What expression does the string “1 +2 * 3” describe?

There are two possible parse trees:

1/\ /N
/N /N
2 3 1 2

3



Ambiguity

What expression does the string “1 +2 * 3” describe?

There are two possible parse trees:

1/\ /\3
/N /N
2 3 1 2

In this course, we will distinguish abstract syntax from concrete
syntax, and focus primarily on abstract syntax (using
conventions or parentheses at the concrete level to
disambiguate as needed).



Representing Expressions

BNF Grammar:
e =X
| n
|e+e;
| ey xe;
|x:=e;; €



Representing Expressions

BNF Grammar:
e =X
| n
|e+e;
|e1*e,
|x:=e;; €

OCaml:

type exp = Var of string
| Intofint
| Add of exp * exp
| Mul of exp * exp
| Assgn of string * exp * exp

Example: Mul(Int 2, Add(Var "foo”, Int 1))



Representing Expressions

BNF Grammar:
er=x
|n
| e,+e;
| €1 %6y
|X =€, 6

Java:

abstract class Expr{}

class Var extends Expr { String name; ... }

class Int extends Expr {intval; ... }

class Add extends Expr { Expr expl, exp2; ... }

class Mul extends Expr { Expr expl, exp2; ... }

class Assgn extends Expr { String var, Expr expl, exp2; ... }

Example: new Mul(new Int(2), new Add(new Var(”foo”), new Int(1)))



Quiz

® 7+(4%2)evaluatesto...?



Quiz

® 7+(4%2)evaluatesto 15



Quiz

® 7+(4%2)evaluatesto 15
e j:=6+1; 2*3x*jevaluatesto...?



Quiz

® 7+(4%2)evaluatesto 15
e j:=6+1; 2x*3x*jevaluatesto 42



Quiz

® 7+(4%2)evaluatesto 15
e j:=6+1; 2x*3x*jevaluatesto 42
e x+1evaluatesto...?



Quiz

® 7+(4%2)evaluatesto 15
e j:=6+1; 2x*3x*jevaluatesto 42
e x+1 evaluates to error?



Quiz

e 7+(4%2)evaluatesto 15
e j:=6+1; 2*3x%jevaluatesto 42
e x+ 1 evaluates to error?

The rest of this lecture will make these intuitions precise...



Mathematical Preliminaries



Binary Relations

The product of two sets A and B, written A x B, contains all
ordered pairs (a,b) witha € Aand b € B.

10



Binary Relations

The product of two sets A and B, written A x B, contains all
ordered pairs (a,b) witha € Aand b € B.

A binary relation on Aand Bis just a subset R C A x B.

10



Binary Relations

The product of two sets A and B, written A x B, contains all
ordered pairs (a,b) witha € Aand b € B.

A binary relation on Aand Bis just a subset R C A x B.

Given a binary relation R C A x B, the set A is called the domain
of R and Bis called the range (or codomain) of R.



Binary Relations

The product of two sets A and B, written A x B, contains all
ordered pairs (a,b) witha € Aand b € B.

A binary relation on Aand Bis just a subset R C A x B.

Given a binary relation R C A x B, the set A is called the domain
of R and Bis called the range (or codomain) of R.

Some Important Relations

e empty: ()

e total: Ax B

e identityon A: {(a,a) | a € A}.

e compositionR; S: {(a,c)|3b.(a,b) € RA(b,c) € S}



Functions

A (total) function fis a binary relation f C A x B with the property
that every a € Ais related to exactly one b € B.

11



Functions

A (total) function fis a binary relation f C A x B with the property
that every a € Ais related to exactly one b € B.

When fis a function, we usually write f : A — B instead of
fCAxB.

11



Functions

A (total) function fis a binary relation f C A x B with the property
that every a € Ais related to exactly one b € B.

When fis a function, we usually write f : A — B instead of
fCAxB.

The image of fis the set of elements b € B that are mapped to by
at least one a € A. Formally:

image(f) = {f(a) | a € A}



Some Important Functions

Given two functionsf: A — Band g : B — C, the composition of
fand g is defined by: (g o f)(x) = g(f(x)) Note order!

12



Some Important Functions

Given two functionsf: A — Band g : B — C, the composition of
fand g is defined by: (g o f)(x) = g(f(x)) Note order!

A partial functionf: A — Bis a total functionf: A — Bon aset
A" C A. The notation dom(f) refers to A'.

12



Some Important Functions

Given two functionsf: A — Band g : B — C, the composition of
fand g is defined by: (g o f)(x) = g(f(x)) Note order!

A partial functionf: A — Bis a total functionf: A — Bon aset
A" C A. The notation dom(f) refers to A'.

Afunctionf: A — Bis said to be injective (or one-to-one) if and
onlyif a; # a, implies f(a;) # f(a,).



Some Important Functions

Given two functionsf: A — Band g : B — C, the composition of
fand g is defined by: (g o f)(x) = g(f(x)) Note order!

A partial functionf: A — Bis a total functionf: A — Bon aset
A" C A. The notation dom(f) refers to A'.

Afunctionf: A — Bis said to be injective (or one-to-one) if and
onlyif a; # a, implies f(a;) # f(a,).

Afunctionf: A — Bis said to be surjective (or onto) if and only if
the image of fis B.



Operational Semantics



Overview

An operational semantics describes how a program executes on
some abstract (imaginary) machine.

14



Overview

An operational semantics describes how a program executes on
some abstract (imaginary) machine.

A small-step operational semantics describes how such an
execution proceeds from configuration to configuration:

(0,€) = (0’ €)

14



Overview

An operational semantics describes how a program executes on
some abstract (imaginary) machine.

A small-step operational semantics describes how such an
execution proceeds from configuration to configuration:
(0,€) = (0’ €)

For our language, a configuration (o, €) is a pair of:
e astore o that records the values of variables,
e and the expression e being evaluated.

14



Overview

An operational semantics describes how a program executes on
some abstract (imaginary) machine.

A small-step operational semantics describes how such an
execution proceeds from configuration to configuration:
(0,€) = (0’ €)

For our language, a configuration (o, €) is a pair of:

e astore o that records the values of variables,

e and the expression e being evaluated.

More formally:

Store £ Var — Int
Config = Store x Exp

(A store is a partial function from variables to integers.)



Operational Semantics

The small-step operational semantics itself is a relation on
configurations—i.e., a subset of Config x Config.



Operational Semantics

The small-step operational semantics itself is a relation on
configurations—i.e., a subset of Config x Config.

Notation: (o,e) — (o, €)
which means ({0, e), (¢/,€')) €

[{3 »

—.



Operational Semantics

The small-step operational semantics itself is a relation on
configurations—i.e., a subset of Config x Config.

Notation: (o,e) — (o, €)
which means ({0, e), (¢/,€')) € “—".

Question: How should we define this relation?



Operational Semantics

The small-step operational semantics itself is a relation on
configurations—i.e., a subset of Config x Config.

Notation: (o, e) — (0’,¢€’)
which means ((o,e), (o', €')) € “—=".

Question: How should we define this relation? Remember that
there are an infinite number of configurations and possible
steps!



Inference Rules

Answer: Define it inductively, using inference rules:

premise, premise,

- NAME
conclusion

16



Inference Rules

Answer: Define it inductively, using inference rules:

premise, premise, :
NAME

conclusion

An inference rule defines an implication: if all the premises hold,
then the conclusion also holds.

Formally, “—” is the smallest relation that is closed under all the
inference rules.

16



Variables

n = o(x)

(o,x) = (o, n)

VAR

17



Addition

p=m+n

{o;n+m) — (o,p)

ADD

18



Addition

p=m+n

A
(o.n+m) = (o.p)

o,e1) — (0, €]
(.0 > (e

(o,e1+€) — (o, €] +e;)

18



Addition

p=m+n
(o,n+m) — (o,p)

ADD

o,e1) — (0, €]
(.0 > (e

(0,61+€2) — (0, €] +6;)

(0,€7) = (0, €))

RADD
(o,n+e3) — (o', n+e€))

18



Multiplication

p=mxn

(o,m*n) — (o, p)

MuL

19



Multiplication

=mXn
P MuL

(o,m*n) — (o,p)

(o,e1) = (d',€))

LMuL
(o,61%€,) — (0, €} *ey)

(0,85) = (o', €)

RMuL
<U> n* e2> — <0J7 nx* e/2>

19



Assignment

o' =olx— n]
ASSGN

(o,x:=n; €;) — (o', €,)

Notation: o[x — n] is a new (partial) function that mostly
behaves like o, except that it maps x to n.

20



Assignment

o' =olx— n]
ASSGN

(o,x:=n; €;) — (o', €,)

Notation: o[x — n] is a new (partial) function that mostly
behaves like o, except that it maps x to n.

(0,€1) = (o', €])
ASSGN1

(o,x:=ey; ) — (0, x:=¢€]; &)

20



Operational Semantics

n= !/ !/
U(X) VAR <Uv el> — <O—/ae/1> LADD
(o,%) = (o, n) (o,e1+€) — (0, €] +e3)
,€2) — /, ; =
(9, €2) <U, &) — RADD P=MEN oo
(o,n+ey) = (o', n+e}) (o,n+m) — (o,p)

<U’ e1> — <J/ve/l> <U> 6’2> — <0'/ae£>

LMuL RMuL
(o,e1%e3) — (0, €] *e;) (o,n*ey) — (o', nxe))
=mxn el — (o', e
P MuL (,2) <U, Y - ASSGN1
(o,m*n) — (o,p) (o,x:=e1; €) = (o', x:=¢€]; €)

o' =ox—n]
ASSGN

(o,x:=n; €)) — (o', €5)

21



Multi-Step Evaluation

We can define the multi-step evaluation relation, written —*, as
the reflexive and transitive closure of the small-step evaluation

relation.

22



