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Lecture 2
Introduction to Semantics



Semantics

Question: What is the meaning of a program?

Answer: We could execute the program using an interpreter or a
compiler, or we could consult a manual...

...but none of these is a satisfactory solution.
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Formal Semantics

Three Approaches
• Operational 〈σ, e〉 −→ 〈σ′, e′〉
▶ Model program by execution on abstract machine
▶ Useful for implementing compilers and interpreters

• Denotational: [[e]]
▶ Model program as mathematical objects
▶ Useful for theoretical foundations

• Axiomatic ` {ϕ} e {ψ}
▶ Model program by the logical formulas it obeys
▶ Useful for proving program correctness
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Arithmetic Expressions



Syntax

A language of integer arithmetic expressions with assignment.

Metavariables:
x, y, z ∈ Var
n,m ∈ Int

e ∈ Exp

BNF Grammar:
e ::= x

| n
| e1 + e2
| e1 * e2
| x := e1 ; e2
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Ambiguity

What expression does the string “1 + 2 * 3” describe?

There are two possible parse trees:

+

1 *

2 3

*

+

1 2

3

In this course, we will distinguish abstract syntax from concrete
syntax, and focus primarily on abstract syntax (using
conventions or parentheses at the concrete level to
disambiguate as needed).
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Representing Expressions
BNF Grammar:

e ::= x
| n
| e1 + e2
| e1 * e2
| x := e1 ; e2

7



Representing Expressions
BNF Grammar:

e ::= x
| n
| e1 + e2
| e1 * e2
| x := e1 ; e2

OCaml:

type exp = Var of string
| Int of int
| Add of exp * exp
| Mul of exp * exp
| Assgn of string * exp * exp

Example: Mul(Int 2, Add(Var ”foo”, Int 1))
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Representing Expressions

BNF Grammar:
e ::= x

| n
| e1 + e2
| e1 * e2
| x := e1 ; e2

Java:

abstract class Expr { }
class Var extends Expr { String name; ... }
class Int extends Expr { int val; ... }
class Add extends Expr { Expr exp1, exp2; ... }
class Mul extends Expr { Expr exp1, exp2; ... }
class Assgn extends Expr { String var, Expr exp1, exp2; ... }

Example: newMul(new Int(2), new Add(new Var(”foo”), new Int(1)))
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Quiz

• 7 + (4 * 2) evaluates to ...?

15
• i := 6 + 1 ; 2 * 3 * i evaluates to

42

• x + 1 evaluates to

error?

The rest of this lecture will make these intuitions precise...
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Mathematical Preliminaries



Binary Relations

The product of two sets A and B, written A× B, contains all
ordered pairs (a, b)with a ∈ A and b ∈ B.

A binary relation on A and B is just a subset R ⊆ A× B.

Given a binary relation R ⊆ A× B, the set A is called the domain
of R and B is called the range (or codomain) of R.

Some Important Relations
• empty: ∅
• total: A× B
• identity on A: {(a, a) | a ∈ A}.
• composition R; S: {(a, c) | ∃b. (a, b) ∈ R ∧ (b, c) ∈ S}
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Functions

A (total) function f is a binary relation f ⊆ A× Bwith the property
that every a ∈ A is related to exactly one b ∈ B.

When f is a function, we usually write f : A → B instead of
f ⊆ A× B.

The image of f is the set of elements b ∈ B that are mapped to by
at least one a ∈ A. Formally:

image(f) ≜ {f(a) | a ∈ A}
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Some Important Functions

Given two functions f : A → B and g : B → C, the composition of
f and g is defined by: (g ◦ f)(x) = g(f(x)) Note order!

A partial function f : A⇀ B is a total function f : A′ → B on a set
A′ ⊆ A. The notation dom(f) refers to A′.

A function f : A → B is said to be injective (or one‑to‑one) if and
only if a1 6= a2 implies f(a1) 6= f(a2).

A function f : A → B is said to be surjective (or onto) if and only if
the image of f is B.
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Operational Semantics



Overview

An operational semantics describes how a program executes on
some abstract (imaginary) machine.

A small‑step operational semantics describes how such an
execution proceeds from configuration to configuration:
〈σ, e〉 → 〈σ′, e′〉
For our language, a configuration 〈σ, e〉 is a pair of:
• a store σ that records the values of variables,
• and the expression e being evaluated.
More formally:

Store ≜ Var⇀ Int
Config ≜ Store× Exp

(A store is a partial function from variables to integers.)
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Operational Semantics

The small‑step operational semantics itself is a relation on
configurations—i.e., a subset of Config× Config.

Notation: 〈σ, e〉 → 〈σ′, e′〉
which means (〈σ, e〉, 〈σ′, e′〉) ∈ “→”.

Question: How should we define this relation? Remember that
there are an infinite number of configurations and possible
steps!
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Inference Rules

Answer: Define it inductively, using inference rules:

premise1 premise2 · · ·
conclusion

NAME

An inference rule defines an implication: if all the premises hold,
then the conclusion also holds.

Formally, “→” is the smallest relation that is closed under all the
inference rules.
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Variables

n = σ(x)
〈σ, x〉 → 〈σ, n〉

VAR
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Addition

p = m+ n
〈σ, n +m〉 → 〈σ, p〉

ADD

〈σ, e1〉 → 〈σ′, e′1〉
〈σ, e1 + e2〉 → 〈σ′, e′1 + e2〉

LADD

〈σ, e2〉 → 〈σ′, e′2〉
〈σ, n + e2〉 → 〈σ′, n + e′2〉

RADD
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Multiplication

p = m× n
〈σ,m * n〉 → 〈σ, p〉

MUL

〈σ, e1〉 → 〈σ′, e′1〉
〈σ, e1 * e2〉 → 〈σ′, e′1 * e2〉

LMUL

〈σ, e2〉 → 〈σ′, e′2〉
〈σ, n * e2〉 → 〈σ′, n * e′2〉

RMUL
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Assignment

σ′ = σ[x 7→ n]
〈σ, x := n ; e2〉 → 〈σ′, e2〉

ASSGN

Notation: σ[x 7→ n] is a new (partial) function that mostly
behaves like σ, except that it maps x to n.

〈σ, e1〉 → 〈σ′, e′1〉
〈σ, x := e1 ; e2〉 → 〈σ′, x := e′1 ; e2〉

ASSGN1
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Operational Semantics

n = σ(x)
〈σ, x〉 → 〈σ, n〉

VAR 〈σ, e1〉 → 〈σ′, e′1〉
〈σ, e1 + e2〉 → 〈σ′, e′1 + e2〉

LADD

〈σ, e2〉 → 〈σ′, e′2〉
〈σ, n + e2〉 → 〈σ′, n + e′2〉

RADD p = m+ n
〈σ, n +m〉 → 〈σ, p〉

ADD

〈σ, e1〉 → 〈σ′, e′1〉
〈σ, e1 * e2〉 → 〈σ′, e′1 * e2〉

LMUL 〈σ, e2〉 → 〈σ′, e′2〉
〈σ, n * e2〉 → 〈σ′, n * e′2〉

RMUL

p = m× n
〈σ,m * n〉 → 〈σ, p〉

MUL 〈σ, e1〉 → 〈σ′, e′1〉
〈σ, x := e1 ; e2〉 → 〈σ′, x := e′1 ; e2〉

ASSGN1

σ′ = σ[x 7→ n]
〈σ, x := n ; e2〉 → 〈σ′, e2〉

ASSGN
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Multi‑Step Evaluation

We can define the multi‑step evaluation relation, written→∗, as
the reflexive and transitive closure of the small‑step evaluation
relation.

〈σ, e〉 →∗ 〈σ, e〉
REFL

〈σ, e〉 → 〈σ′, e′〉 〈σ′, e′〉 →∗ 〈σ′′, e′′〉
〈σ, e〉 →∗ 〈σ′′, e′′〉

TRANS
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