CS 4110

Programming Languages \& Logics

Lecture 15
Encodings

Review: λ-calculus

Syntax

$$
\begin{aligned}
& e::=x\left|e_{1} e_{2}\right| \lambda x \cdot e \\
& v::=\lambda x \cdot e
\end{aligned}
$$

Semantics

$$
\begin{gathered}
\frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}} \quad \frac{e \rightarrow e^{\prime}}{v e \rightarrow v e^{\prime}} \\
\overline{(\lambda x . e) v \rightarrow e\{v / x\}} \beta
\end{gathered}
$$

Rewind: Currying

This is just a function that returns a function:

$$
\begin{gathered}
\mathrm{ADD} \triangleq \lambda x \cdot \lambda y \cdot x+y \\
\mathrm{ADD} 38 \rightarrow \lambda y \cdot 38+y \\
\text { ADD } 384=(\operatorname{ADD} 38) 4 \rightarrow 42
\end{gathered}
$$

Informally, you can think of it as a curried function that takes two arguments, one after the other.

But that's just a way to get intuition. The λ-calculus only has one-argument functions.

Review: Call-by-Value

Here are the syntax and CBV semantics of λ-calculus:

$$
\begin{gathered}
e::=x|\lambda x . e| e_{1} e_{2} \\
v::=\lambda x . e \\
\frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}} \quad \frac{e \rightarrow e^{\prime}}{v e \rightarrow v e^{\prime}} \\
\frac{(\lambda x . e) v \rightarrow e\{v / x\}}{} \beta
\end{gathered}
$$

There are two kinds of rules: congruence rules that specify evaluation order and computation rules that specify the "interesting" reductions.

Evaluation Contexts

Evaluation contexts let us separate out these two kinds of rules.

Evaluation Contexts

Evaluation contexts let us separate out these two kinds of rules.
An evaluation context E is an expression with a "hole" in it: a single occurrence of the special symbol [.] in place of a subexpression.

$$
E::=[\cdot]|E e| v E
$$

Evaluation Contexts

Evaluation contexts let us separate out these two kinds of rules.
An evaluation context E is an expression with a "hole" in it: a single occurrence of the special symbol [.] in place of a subexpression.

$$
E::=[\cdot]|E e| v E
$$

We write $E[e]$ to mean the evaluation context E where the hole has been replaced with the expression e.

Examples

$$
\begin{aligned}
E_{1} & =[\cdot](\lambda x \cdot x) \\
E_{1}[\lambda y \cdot y y] & =(\lambda y \cdot y y) \lambda x \cdot x
\end{aligned}
$$

Examples

$$
\begin{aligned}
E_{1} & =[\cdot](\lambda x \cdot x) \\
E_{1}[\lambda y \cdot y y] & =(\lambda y \cdot y y) \lambda x \cdot x \\
E_{2} & =(\lambda z \cdot z z)[\cdot] \\
E_{2}[\lambda x \cdot \lambda y \cdot x] & =(\lambda z \cdot z z)(\lambda x \cdot \lambda y \cdot x)
\end{aligned}
$$

Examples

$$
\begin{aligned}
E_{1} & =[\cdot](\lambda x \cdot x) \\
E_{1}[\lambda y \cdot y y] & =(\lambda y \cdot y y) \lambda x \cdot x \\
E_{2} & =(\lambda z \cdot z z)[\cdot] \\
E_{2}[\lambda x \cdot \lambda y \cdot x] & =(\lambda z \cdot z z)(\lambda x \cdot \lambda y \cdot x) \\
E_{3} & =([\cdot] \lambda x \cdot x x)((\lambda y \cdot y)(\lambda y \cdot y)) \\
E_{3}[\lambda f \cdot \lambda g \cdot f g] & =((\lambda f \cdot \lambda g \cdot f g) \lambda x \cdot x x)((\lambda y \cdot y)(\lambda y \cdot y))
\end{aligned}
$$

CBV With Evaluation Contexts

With evaluation contexts, we can define the evaluation semantics for the CBV λ-calculus with just two rules: one for evaluation contexts, and one for β-reduction.

CBV With Evaluation Contexts

With evaluation contexts, we can define the evaluation semantics for the CBV λ-calculus with just two rules: one for evaluation contexts, and one for β-reduction.

With this syntax:

$$
E::=[\cdot]|E e| v E
$$

The small-step rules are:

$$
\frac{e \rightarrow e^{\prime}}{E[e] \rightarrow E\left[e^{\prime}\right]}
$$

$\overline{(\lambda x . e) v \rightarrow e\{v / x\}}^{\beta}$

CBN With Evaluation Contexts

We can also define the semantics of CBN λ-calculus with evaluation contexts.

CBN With Evaluation Contexts

We can also define the semantics of CBN λ-calculus with evaluation contexts.

For call-by-name, the syntax for evaluation contexts is different:

$$
E::=[\cdot] \mid E e
$$

CBN With Evaluation Contexts

We can also define the semantics of CBN λ-calculus with evaluation contexts.

For call-by-name, the syntax for evaluation contexts is different:

$$
E::=[\cdot] \mid E e
$$

But the small-step rules are the same:

$$
\begin{gathered}
\frac{e \rightarrow e^{\prime}}{E[e] \rightarrow E\left[e^{\prime}\right]} \\
\frac{(\lambda x . e) e^{\prime} \rightarrow e\left\{e^{\prime} / x\right\}}{\beta}
\end{gathered}
$$

Encodings

The pure λ-calculus contains only functions as values. It is not exactly easy to write large or interesting programs in the pure λ-calculus. We can however encode objects, such as booleans, and integers.

Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and other operators that behave as follows:

AND TRUE FALSE $=$ FALSE
NOT FALSE $=$ TRUE
IF TRUE $e_{1} e_{2}=e_{1}$
IF FALSE $e_{1} e_{2}=e_{2}$

Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and other operators that behave as follows:

$$
\begin{aligned}
\text { AND TRUE FALSE } & =\text { FALSE } \\
\text { NOT FALSE } & =\text { TRUE } \\
\text { IF TRUE } e_{1} e_{2} & =e_{1} \\
\text { IF FALSE } e_{1} e_{2} & =e_{2}
\end{aligned}
$$

Let's start by defining TRUE and FALSE:
TRUE \triangleq
FALSE \triangleq

Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and other operators that behave as follows:

$$
\begin{aligned}
\text { AND TRUE FALSE } & =\text { FALSE } \\
\text { NOT FALSE } & =\text { TRUE } \\
\text { IF TRUE } e_{1} e_{2} & =e_{1} \\
\text { IF FALSE } e_{1} e_{2} & =e_{2}
\end{aligned}
$$

Let's start by defining TRUE and FALSE:

$$
\begin{aligned}
\mathrm{TRUE} & \triangleq \lambda x \cdot \lambda y \cdot x \\
\mathrm{FALSE} & \triangleq \lambda x \cdot \lambda y \cdot y
\end{aligned}
$$

Booleans

We want the function IF to behave like
$\lambda b . \lambda t$. λf. if b is our term TRUE then t, otherwise f

Booleans

We want the function IF to behave like
λb. λt. λf. if b is our term TRUE then t, otherwise f
We can rely on the way we defined TRUE and FALSE:

$$
\mathrm{IF} \triangleq \lambda b . \lambda t . \lambda f . b t f
$$

Booleans

We want the function IF to behave like
λb. λt. λf. if b is our term TRUE then t, otherwise f
We can rely on the way we defined TRUE and FALSE:

$$
\mathrm{IF} \triangleq \lambda b . \lambda t . \lambda f . b t f
$$

We can also write the standard Boolean operators.

$$
\begin{array}{r}
\mathrm{NOT} \triangleq \\
\mathrm{AND} \triangleq \\
\mathrm{OR} \triangleq
\end{array}
$$

Booleans

We want the function IF to behave like
$\lambda b . \lambda t$. λf. if b is our term TRUE then t, otherwise f
We can rely on the way we defined TRUE and FALSE:

$$
\mathrm{IF} \triangleq \lambda b . \lambda t . \lambda f . b t f
$$

We can also write the standard Boolean operators.

$$
\begin{aligned}
& \mathrm{NOT} \triangleq \lambda b \cdot b \text { FALSE TRUE } \\
& \mathrm{AND} \triangleq \lambda b_{1} \cdot \lambda b_{2} \cdot b_{1} b_{2} \text { FALSE } \\
& \mathrm{OR} \triangleq \lambda b_{1} \cdot \lambda b_{2} \cdot b_{1} \text { TRUE } b_{2}
\end{aligned}
$$

Church Numerals

Let's encode the natural numbers!
We'll write \bar{n} for the encoding of the number n. The central function we'll need is a successor operation:

$$
\operatorname{SUCC} \bar{n}=\overline{n+1}
$$

Church Numerals

Church numerals encode a number n as a function that takes f and x, and applies f to $x n$ times.

$$
\begin{aligned}
& \overline{0} \triangleq \lambda f . \lambda x \cdot x \\
& \overline{1} \triangleq \lambda f . \lambda x \cdot f x \\
& \overline{2} \triangleq \lambda f . \lambda x \cdot f(f x)
\end{aligned}
$$

Church Numerals

Church numerals encode a number n as a function that takes f and x, and applies f to $x n$ times.

$$
\begin{aligned}
& \overline{0} \triangleq \lambda f . \lambda x \cdot x \\
& \overline{1} \triangleq \lambda f . \lambda x \cdot f x \\
& \overline{2} \triangleq \lambda f . \lambda x \cdot f(f x)
\end{aligned}
$$

We can write a successor function that "inserts" another application of f :
$\operatorname{SUCC} \triangleq \lambda n \cdot \lambda f . \lambda x . f(n f x)$

Addition

Given the definition of SUCC, we can define addition. Intuitively, the natural number $n_{1}+n_{2}$ is the result of applying the successor function n_{1} times to n_{2}.

$$
\text { PLUS } \triangleq
$$

Addition

Given the definition of SUCC, we can define addition. Intuitively, the natural number $n_{1}+n_{2}$ is the result of applying the successor function n_{1} times to n_{2}.

$$
\text { PLUS } \triangleq \lambda n_{1} \cdot \lambda n_{2} \cdot n_{1} \operatorname{SUCC} n_{2}
$$

