CS4110

Programming Languages & Logics

Lecture 15
Encodings

Review: \-calculus

Syntax
e = x|eie| e
v = \.e
Semantics
e, — €] e—¢e
e1e; — €| e ve = ve

(M.e)v — e{v/x} 4

Rewind: Currying

This is just a function that returns a function:

ADD £ M. \y.x +y
ADD 38 — \y.38 +y

ADD 38 4 = (ADD 38) 4 — 42

Informally, you can think of it as a curried function that takes
two arguments, one after the other.

But that’s just a way to get intuition. The A-calculus only has
one-argument functions.

Review: Call-by-Value

Here are the syntax and CBV semantics of A-calculus:

erx=x|Mel|e e

Vi=A\x.e
e, — €} e —¢e
ere, — e e ve = ve'

(M.e)v — e{v/x} y

There are two kinds of rules: congruence rules that specify
evaluation order and computation rules that specify the
“interesting” reductions.

Evaluation Contexts

Evaluation contexts let us separate out these two kinds of rules.

Evaluation Contexts

Evaluation contexts let us separate out these two kinds of rules.

An evaluation context E is an expression with a “hole” iniit: a
single occurrence of the special symbol [-] in place of a

subexpression.
E:=[]|Ee|VE

(6]

Evaluation Contexts

Evaluation contexts let us separate out these two kinds of rules.

An evaluation context E is an expression with a “hole” iniit: a
single occurrence of the special symbol [-] in place of a

subexpression.
E:=[]|Ee|VE

We write E[e] to mean the evaluation context E where the hole
has been replaced with the expression e.

Examples

Ey =[] (\x.x)
Ei[Ay.yyl = (Ay.yy) M.x

Examples

Ey =[] (\x.x)
Ei[Ay.yyl = (Ay.yy) M.x

E, =(\z.z2) []
Ex[M. Ay. x| = (Az.z22) (Ax. \y. x)

Examples

Ey =[] (Mx.x)
Ei[Ay.yyl = (Ay.yy) M.x
E, =(\z.z2) []
Ey[M. Ay x| = (Az.22) (Ax. \y. x)

Es = ([] M.xx) ((Ay-y) (\.y))
Es[A.Ag.fg] = (M. Ag.fg) Ax.xx) (Ay-y) (Ay-y))

CBV With Evaluation Contexts

With evaluation contexts, we can define the evaluation
semantics for the CBV A-calculus with just two rules: one for
evaluation contexts, and one for S-reduction.

CBV With Evaluation Contexts

With evaluation contexts, we can define the evaluation
semantics for the CBV A-calculus with just two rules: one for
evaluation contexts, and one for S-reduction.

With this syntax:
=[] |Ee|VE

The small-step rules are:

e—¢e
Ele] — E[€']

(M.e)v — e{v/x} B

CBN With Evaluation Contexts

We can also define the semantics of CBN A-calculus with
evaluation contexts.

CBN With Evaluation Contexts

We can also define the semantics of CBN A-calculus with
evaluation contexts.

For call-by-name, the syntax for evaluation contexts is different:

E:=][]|Ee

CBN With Evaluation Contexts

We can also define the semantics of CBN A-calculus with
evaluation contexts.

For call-by-name, the syntax for evaluation contexts is different:
E:=][]|Ee

But the small-step rules are the same:

e—¢e
Ele] — E[€]

(Mx.e) e — e{€e'/x} v

Encodings

The pure A-calculus contains only functions as values. It is not
exactly easy to write large or interesting programs in the pure
A-calculus. We can however encode objects, such as booleans,
and integers.

Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and
other operators that behave as follows:

AND TRUE FALSE = FALSE
NOT FALSE = TRUE
IFTRUEe; e; = €;
IF FALSEe; e, = e,

10

Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and
other operators that behave as follows:

AND TRUE FALSE = FALSE
NOT FALSE = TRUE
IFTRUEe; e; = €;
IF FALSEe; e, = e,

Let’s start by defining TRUE and FALSE:

[I>

TRUE
FALSE £

10

Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and
other operators that behave as follows:

AND TRUE FALSE = FALSE
NOT FALSE = TRUE
IFTRUEe; e; = €;
IF FALSEe; e, = e,

Let’s start by defining TRUE and FALSE:

TRUE £ \x. \y. x
FALSE £)\x. \y.y

10

Booleans

We want the function IF to behave like

Ab. At. M. if bis our term TRUE then t, otherwise f

11

Booleans

We want the function IF to behave like
Ab. At. M. if bis our term TRUE then t, otherwise f
We can rely on the way we defined TRUE and FALSE:

IF2 M. AN btS

11

Booleans

We want the function IF to behave like
Ab. At. M. if bis our term TRUE then t, otherwise f
We can rely on the way we defined TRUE and FALSE:
IF 2 \b. At A.btF
We can also write the standard Boolean operators.

NOT £
AND =
OR £

11

Booleans

We want the function IF to behave like
Ab. At. M. if bis our term TRUE then t, otherwise f
We can rely on the way we defined TRUE and FALSE:
IF 2 \b. At A.btF
We can also write the standard Boolean operators.

NOT £ \b. b FALSE TRUE
AND £ \b;. \b,. by b, FALSE
OR £ \b;. \b,. b; TRUE b,

Church Numerals

Let’s encode the natural numbers!

We’ll write n for the encoding of the number n. The central
function we’ll need is a successor operation:

SUCCn=n+1

12

Church Numerals

Church numerals encode a number n as a function that takes f
and x, and applies fto x n times.

M. X x
M. x. fx
M. f(Fx)

N | Ol
(> > >

13

Church Numerals

Church numerals encode a number n as a function that takes f
and x, and applies fto x n times.

M. X x
M. x. fx
M. f(Fx)

N | Ol
(> > >

We can write a successor function that “inserts” another
application of f:

SUCC £ An. M. \x. f(nfx)

Addition

Given the definition of SUCC, we can define addition. Intuitively,
the natural number n; + n, is the result of applying the
successor function n; times to n,.

PLUS £

14

Addition

Given the definition of SUCC, we can define addition. Intuitively,
the natural number n; + n, is the result of applying the
successor function n; times to n,.

PLUS £ A\n;. An,.n; SUCC n,

14

