

CS 4110

Programming Languages & Logics

Lecture 15
Encodings

Review: λ-calculus

Syntax
e ::= x | e1 e2 | λx. e
v ::= λx. e

Semantics

e1 → e′1
e1 e2 → e′1 e2

e → e′

v e → v e′

(λx. e) v → e{v/x}
β

2

Rewind: Currying

This is just a function that returns a function:

ADD ≜ λx. λy. x+ y

ADD 38 → λy. 38+ y

ADD 38 4 = (ADD 38) 4 → 42

Informally, you can think of it as a curried function that takes
two arguments, one after the other.

But that’s just a way to get intuition. The λ-calculus only has
one-argument functions.

3

Review: Call-by-Value

Here are the syntax and CBV semantics of λ-calculus:

e ::= x | λx. e | e1 e2
v ::= λx. e

e1 → e′1
e1 e2 → e′1 e2

e → e′

v e → v e′

(λx. e) v → e{v/x}
β

There are two kinds of rules: congruence rules that specify
evaluation order and computation rules that specify the
“interesting” reductions.

4

Evaluation Contexts

Evaluation contexts let us separate out these two kinds of rules.

An evaluation context E is an expression with a “hole” in it: a
single occurrence of the special symbol [·] in place of a
subexpression.

E ::= [·] | E e | v E

Wewrite E[e] to mean the evaluation context Ewhere the hole
has been replaced with the expression e.

5

Evaluation Contexts

Evaluation contexts let us separate out these two kinds of rules.

An evaluation context E is an expression with a “hole” in it: a
single occurrence of the special symbol [·] in place of a
subexpression.

E ::= [·] | E e | v E

Wewrite E[e] to mean the evaluation context Ewhere the hole
has been replaced with the expression e.

5

Evaluation Contexts

Evaluation contexts let us separate out these two kinds of rules.

An evaluation context E is an expression with a “hole” in it: a
single occurrence of the special symbol [·] in place of a
subexpression.

E ::= [·] | E e | v E

Wewrite E[e] to mean the evaluation context Ewhere the hole
has been replaced with the expression e.

5

Examples

E1 = [·] (λx. x)
E1[λy. y y] = (λy. y y) λx. x

E2 = (λz. z z) [·]
E2[λx. λy. x] = (λz. z z) (λx. λy. x)

E3 = ([·] λx. x x) ((λy. y) (λy. y))
E3[λf. λg. f g] = ((λf. λg. f g) λx. x x) ((λy. y) (λy. y))

6

Examples

E1 = [·] (λx. x)
E1[λy. y y] = (λy. y y) λx. x

E2 = (λz. z z) [·]
E2[λx. λy. x] = (λz. z z) (λx. λy. x)

E3 = ([·] λx. x x) ((λy. y) (λy. y))
E3[λf. λg. f g] = ((λf. λg. f g) λx. x x) ((λy. y) (λy. y))

6

Examples

E1 = [·] (λx. x)
E1[λy. y y] = (λy. y y) λx. x

E2 = (λz. z z) [·]
E2[λx. λy. x] = (λz. z z) (λx. λy. x)

E3 = ([·] λx. x x) ((λy. y) (λy. y))
E3[λf. λg. f g] = ((λf. λg. f g) λx. x x) ((λy. y) (λy. y))

6

CBVWith Evaluation Contexts

With evaluation contexts, we can define the evaluation
semantics for the CBV λ-calculus with just two rules: one for
evaluation contexts, and one for β-reduction.

With this syntax:

E ::= [·] | E e | v E
The small-step rules are:

e → e′

E[e] → E[e′]

(λx. e) v → e{v/x}
β

7

CBVWith Evaluation Contexts

With evaluation contexts, we can define the evaluation
semantics for the CBV λ-calculus with just two rules: one for
evaluation contexts, and one for β-reduction.

With this syntax:

E ::= [·] | E e | v E
The small-step rules are:

e → e′

E[e] → E[e′]

(λx. e) v → e{v/x}
β

7

CBNWith Evaluation Contexts

We can also define the semantics of CBN λ-calculus with
evaluation contexts.

For call-by-name, the syntax for evaluation contexts is different:

E ::= [·] | E e

But the small-step rules are the same:

e → e′

E[e] → E[e′]

(λx. e) e′ → e{e′/x}
β

8

CBNWith Evaluation Contexts

We can also define the semantics of CBN λ-calculus with
evaluation contexts.

For call-by-name, the syntax for evaluation contexts is different:

E ::= [·] | E e

But the small-step rules are the same:

e → e′

E[e] → E[e′]

(λx. e) e′ → e{e′/x}
β

8

CBNWith Evaluation Contexts

We can also define the semantics of CBN λ-calculus with
evaluation contexts.

For call-by-name, the syntax for evaluation contexts is different:

E ::= [·] | E e

But the small-step rules are the same:

e → e′

E[e] → E[e′]

(λx. e) e′ → e{e′/x}
β

8

Encodings

The pure λ-calculus contains only functions as values. It is not
exactly easy to write large or interesting programs in the pure
λ-calculus. We can however encode objects, such as booleans,
and integers.

9

Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and
other operators that behave as follows:

AND TRUE FALSE = FALSE
NOT FALSE = TRUE

IF TRUE e1 e2 = e1
IF FALSE e1 e2 = e2

Let’s start by defining TRUE and FALSE:

TRUE ≜

λx. λy. x

FALSE ≜

λx. λy. y

10

Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and
other operators that behave as follows:

AND TRUE FALSE = FALSE
NOT FALSE = TRUE

IF TRUE e1 e2 = e1
IF FALSE e1 e2 = e2

Let’s start by defining TRUE and FALSE:

TRUE ≜

λx. λy. x

FALSE ≜

λx. λy. y

10

Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and
other operators that behave as follows:

AND TRUE FALSE = FALSE
NOT FALSE = TRUE

IF TRUE e1 e2 = e1
IF FALSE e1 e2 = e2

Let’s start by defining TRUE and FALSE:

TRUE ≜ λx. λy. x

FALSE ≜ λx. λy. y

10

Booleans

Wewant the function IF to behave like

λb. λt. λf. if b is our term TRUE then t, otherwise f

We can rely on the way we defined TRUE and FALSE:

IF ≜ λb. λt. λf. b t f

We can also write the standard Boolean operators.

NOT ≜

λb. b FALSE TRUE

AND ≜

λb1. λb2. b1 b2 FALSE

OR ≜

λb1. λb2. b1 TRUE b2

11

Booleans

Wewant the function IF to behave like

λb. λt. λf. if b is our term TRUE then t, otherwise f

We can rely on the way we defined TRUE and FALSE:

IF ≜ λb. λt. λf. b t f

We can also write the standard Boolean operators.

NOT ≜

λb. b FALSE TRUE

AND ≜

λb1. λb2. b1 b2 FALSE

OR ≜

λb1. λb2. b1 TRUE b2

11

Booleans

Wewant the function IF to behave like

λb. λt. λf. if b is our term TRUE then t, otherwise f

We can rely on the way we defined TRUE and FALSE:

IF ≜ λb. λt. λf. b t f

We can also write the standard Boolean operators.

NOT ≜

λb. b FALSE TRUE

AND ≜

λb1. λb2. b1 b2 FALSE

OR ≜

λb1. λb2. b1 TRUE b2

11

Booleans

Wewant the function IF to behave like

λb. λt. λf. if b is our term TRUE then t, otherwise f

We can rely on the way we defined TRUE and FALSE:

IF ≜ λb. λt. λf. b t f

We can also write the standard Boolean operators.

NOT ≜ λb. b FALSE TRUE

AND ≜ λb1. λb2. b1 b2 FALSE

OR ≜ λb1. λb2. b1 TRUE b2

11

Church Numerals

Let’s encode the natural numbers!

We’ll write n for the encoding of the number n. The central
function we’ll need is a successor operation:

SUCC n = n+ 1

12

Church Numerals

Church numerals encode a number n as a function that takes f
and x, and applies f to x n times.

0 ≜ λf. λx. x
1 ≜ λf. λx. f x
2 ≜ λf. λx. f (f x)

We can write a successor function that “inserts” another
application of f:

SUCC ≜ λn. λf. λx. f (n f x)

13

Church Numerals

Church numerals encode a number n as a function that takes f
and x, and applies f to x n times.

0 ≜ λf. λx. x
1 ≜ λf. λx. f x
2 ≜ λf. λx. f (f x)

We can write a successor function that “inserts” another
application of f:

SUCC ≜ λn. λf. λx. f (n f x)

13

Addition

Given the definition of SUCC, we can define addition. Intuitively,
the natural number n1 + n2 is the result of applying the
successor function n1 times to n2.

PLUS ≜

λn1. λn2. n1 SUCC n2

14

Addition

Given the definition of SUCC, we can define addition. Intuitively,
the natural number n1 + n2 is the result of applying the
successor function n1 times to n2.

PLUS ≜ λn1. λn2. n1 SUCC n2

14

