CS 4110

Programming Languages & Logics

Lecture 15 De Bruijn, Combinators, Encodings

Review: λ -calculus

Syntax

$$e ::= x | e_1 e_2 | \lambda x. e$$
$$v ::= \lambda x. e$$

Semantics

$$\frac{e_1 \to e_1'}{e_1 \, e_2 \to e_1' \, e_2} \qquad \frac{e \to e'}{v \, e \to v \, e'}$$
$$\frac{\overline{(\lambda x. \, e) \, v \to e\{v/x\}} \, \beta}{\beta}$$

Rewind: Currying

This is just a function that returns a function:

 $ADD \triangleq \lambda x. \lambda y. x + y$

ADD 38 $ightarrow \lambda y$. 38 + y

ADD 38 4 = (ADD 38) 4
$$\rightarrow$$
 42

Informally, you can think of it as a *curried* function that takes two arguments, one after the other.

But that's just a way to get intuition. The λ -calculus only has one-argument functions.

Another way to avoid the tricky issues with substitution is to use a *nameless* representation of terms.

$$e ::= n \mid \lambda.e \mid e e$$

Another way to avoid the tricky issues with substitution is to use a *nameless* representation of terms.

e ::=
$$n \mid \lambda$$
.e \mid e e

Abstractions have lost their variables!

Variables are replaced with numerical indices!

Standard	de Bruijn
λ x. x	λ . 0
$\lambda z. z$	

Standard	de Bruijn
λ x . x	λ . 0
$\lambda z. z$	λ . 0
λχ. λγ. χ	

Standard	de Bruijn	
λ x . x	λ . 0	
λ <i>z</i> . <i>z</i>	λ . 0	
λх. λу. х	λ . λ . 1	
$\lambda x. \lambda y. \lambda s. \lambda z. x s (y s z)$		

Standard	de Bruijn
λ x . x	λ. 0
$\lambda z. z$	λ. 0
λ x . λ y . x	λ . λ . 1
$\lambda x. \lambda y. \lambda s. \lambda z. x s (y s z)$	λ . λ . λ . λ . 31(210)
$(\lambda x. x x) (\lambda x. x x)$	

Standard	de Bruijn
λ x . x	λ. 0
λ <i>z</i> . <i>z</i>	λ. 0
λх. λу. х	λ . λ . 1
$\lambda x. \lambda y. \lambda s. \lambda z. x s (y s z)$	λ . λ . λ . λ . 31(210)
$(\lambda x. x x) (\lambda x. x x)$	$(\lambda. 00) (\lambda. 00)$
$(\lambda x. \lambda x. x) (\lambda y. y)$	

Standard	de Bruijn
λ <i>x. x</i>	λ. 0
$\lambda z. z$	λ. 0
λ x . λ y . x	λ . λ . 1
$\lambda x. \lambda y. \lambda s. \lambda z. x s (y s z)$	λ . λ . λ . λ . 31(210)
$(\lambda x. x x) (\lambda x. x x)$	$(\lambda. 00) (\lambda. 00)$
$(\lambda x. \lambda x. x) (\lambda y. y)$	$(\lambda. \ \lambda. \ 0) (\lambda. \ 0)$

To represent a λ -expression that contains free variables in de Bruijn notation, we need a way to map the free variables to integers.

We will work with respect to a map Γ from variables to integers called a *context*.

Examples:

Suppose that Γ maps x to 0 and y to 1.

- Representation of x y is 0 1
- Representation of $\lambda z. x y z \lambda. 120$

To define substitution, we will need an operation that shifts by *i* the variables above a cutoff *c*:

$$\uparrow_{c}^{i}(n) = \begin{cases} n & \text{if } n < c \\ n+i & \text{otherwise} \end{cases}$$

$$\uparrow_{c}^{i}(\lambda.e) = \lambda.(\uparrow_{c+1}^{i}e)$$

$$\uparrow_{c}^{i}(e_{1}e_{2}) = (\uparrow_{c}^{i}e_{1})(\uparrow_{c}^{i}e_{2})$$

The cutoff *c* keeps track of the variables that were bound in the original expression and so should not be shifted.

The cutoff is 0 initially.

Substitution

Now we can define substitution:

$$n\{e/m\} = \begin{cases} e & \text{if } n = m \\ n & \text{otherwise} \end{cases}$$
$$(\lambda.e_1)\{e/m\} = \lambda.e_1\{(\uparrow_0^1 e)/m + 1\}$$
$$(e_1 e_2)\{e/m\} = (e_1\{e/m\})(e_2\{e/m\})$$

Substitution

Now we can define substitution:

$$n\{e/m\} = \begin{cases} e & \text{if } n = m \\ n & \text{otherwise} \end{cases}$$
$$(\lambda.e_1)\{e/m\} = \lambda.e_1\{(\uparrow_0^1 e)/m + 1\}$$
$$(e_1 e_2)\{e/m\} = (e_1\{e/m\})(e_2\{e/m\})$$

The β rule for terms in de Bruijn notation is just:

$$\overline{(\lambda.e_1)\,e_2 \rightarrow \uparrow_0^{-1}\left(e_1\{\uparrow_0^1\,e_2/0\}\right)} \beta$$

Consider the term $(\lambda u.\lambda v.u x) y$ with respect to a context where $\Gamma(x) = 0$ and $\Gamma(y) = 1$.

 $(\lambda .\lambda .12)1$

$$(\lambda.\lambda.12) 1 \ o \ \uparrow_0^{-1} ((\lambda.12) \{(\uparrow_0^1 1)/0\})$$

$$\begin{array}{r} (\lambda.\lambda.1\,2)\,1\\ \rightarrow \ \uparrow_0^{-1} ((\lambda.1\,2)\{(\uparrow_0^1\,1)/0\})\\ = \ \uparrow_0^{-1} ((\lambda.1\,2)\{2/0\})\end{array}$$

$$\begin{array}{rl} & (\lambda.\lambda.1\,2)\,1 \\ \rightarrow & \uparrow_0^{-1} \left((\lambda.1\,2)\{(\uparrow_0^1\,1)/0\} \right) \\ & = & \uparrow_0^{-1} \left((\lambda.1\,2)\{2/0\} \right) \\ & = & \uparrow_0^{-1} \lambda.((1\,2)\{(\uparrow_0^1\,2)/(0+1)\}) \end{array}$$

$$\begin{array}{l} (\lambda.\lambda.12)\,\mathbf{1} \\ \rightarrow \quad \uparrow_0^{-1}\,((\lambda.1\,2)\{(\uparrow_0^1\,\mathbf{1})/0\}) \\ = \quad \uparrow_0^{-1}\,((\lambda.1\,2)\{2/0\}) \\ = \quad \uparrow_0^{-1}\,\lambda.((1\,2)\{(\uparrow_0^1\,2)/(0+1)\}) \\ = \quad \uparrow_0^{-1}\,\lambda.((1\,2)\{3/1\}) \end{array}$$

$$\begin{array}{l} (\lambda.\lambda.12) \, 1 \\ \rightarrow \quad \uparrow_0^{-1} \left((\lambda.12) \{ (\uparrow_0^1 1)/0 \} \right) \\ = \quad \uparrow_0^{-1} \left((\lambda.12) \{ 2/0 \} \right) \\ = \quad \uparrow_0^{-1} \lambda.((12) \{ (\uparrow_0^1 2)/(0+1) \}) \\ = \quad \uparrow_0^{-1} \lambda.((12) \{ 3/1 \}) \\ = \quad \uparrow_0^{-1} \lambda.(1\{ 3/1 \}) \left(2\{ 3/1 \} \right) \end{array}$$

$$\begin{array}{l} (\lambda.\lambda.12) \, 1 \\ \rightarrow \quad \uparrow_0^{-1} \left((\lambda.12) \{ (\uparrow_0^1 1)/0 \} \right) \\ = \quad \uparrow_0^{-1} \left((\lambda.12) \{ 2/0 \} \right) \\ = \quad \uparrow_0^{-1} \lambda.((12) \{ (\uparrow_0^1 2)/(0+1) \}) \\ = \quad \uparrow_0^{-1} \lambda.((12) \{ 3/1 \}) \\ = \quad \uparrow_0^{-1} \lambda.(1\{ 3/1 \}) \left(2\{ 3/1 \} \right) \\ = \quad \uparrow_0^{-1} \lambda.32 \end{array}$$

$$\begin{array}{l} (\lambda.\lambda.12) \, 1 \\ \rightarrow \quad \uparrow_0^{-1} \left((\lambda.12) \{ (\uparrow_0^1 1)/0 \} \right) \\ = \quad \uparrow_0^{-1} \left((\lambda.12) \{ 2/0 \} \right) \\ = \quad \uparrow_0^{-1} \lambda.((12) \{ (\uparrow_0^1 2)/(0+1) \}) \\ = \quad \uparrow_0^{-1} \lambda.((12) \{ 3/1 \}) \\ = \quad \uparrow_0^{-1} \lambda.(1\{ 3/1 \}) \left(2\{ 3/1 \} \right) \\ = \quad \uparrow_0^{-1} \lambda.32 \\ = \quad \lambda.21 \end{array}$$

Consider the term $(\lambda u.\lambda v.u x) y$ with respect to a context where $\Gamma(x) = 0$ and $\Gamma(y) = 1$.

$$\begin{array}{l} (\lambda.\lambda.12) \, 1 \\ \rightarrow \quad \uparrow_0^{-1} \left((\lambda.12) \{ (\uparrow_0^1 \, 1)/0 \} \right) \\ = \quad \uparrow_0^{-1} \left((\lambda.12) \{ 2/0 \} \right) \\ = \quad \uparrow_0^{-1} \, \lambda.((12) \{ (\uparrow_0^1 \, 2)/(0+1) \}) \\ = \quad \uparrow_0^{-1} \, \lambda.((12) \{ 3/1 \}) \\ = \quad \uparrow_0^{-1} \, \lambda.(1\{ 3/1 \}) \left(2\{ 3/1 \} \right) \\ = \quad \uparrow_0^{-1} \, \lambda.32 \\ = \quad \lambda.21 \end{array}$$

which, in standard notation (with respect to Γ), is the same as $\lambda v.y x$.

Combinators

Another way to avoid the issues having to do with free and bound variable names in the λ -calculus is to work with closed expressions or *combinators*.

With just three combinators, we can encode the entire $\lambda\text{-calculus.}$

Combinators

Another way to avoid the issues having to do with free and bound variable names in the λ -calculus is to work with closed expressions or *combinators*.

With just three combinators, we can encode the entire $\lambda\text{-calculus.}$

$$K = \lambda x. \lambda y. x$$

$$S = \lambda x. \lambda y. \lambda z. x z (y z)$$

$$I = \lambda x. x$$

Combinators

We can even define independent evaluation rules that don't depend on the λ -calculus at all.

Behold the "SKI-calculus":

$$\begin{array}{l}\mathsf{K}\,e_1\,e_2\to e_1\\\mathsf{S}\,e_1\,e_2\,e_3\to e_1\,e_3\,(e_2\,e_3)\\\mathsf{I}\,e\to e\end{array}$$

You would never want to program in this language—it doesn't even have variables!—but it's exactly as powerful as the λ -calculus.

The function [x] that takes a combinator term *M* and builds another term that behaves like $\lambda x.M$:

$$\begin{bmatrix} x \end{bmatrix} x = I \\ \begin{bmatrix} x \end{bmatrix} N = K N \\ \begin{bmatrix} x \end{bmatrix} N_1 N_2 = S(\begin{bmatrix} x \end{bmatrix} N_1)(\begin{bmatrix} x \end{bmatrix} N_2)$$
 where $x \notin fv(N)$

The idea is that $([x] M) N \rightarrow M\{N/x\}$ for every term N.

Bracket Abstraction

We then define a function (e)* that maps a λ -calculus expression to a combinator term:

$$(x)* = x$$

 $(e_1 e_2)* = (e_1)* (e_2)*$
 $(\lambda x.e)* = [x] (e)*$

As an example, the expression $\lambda x. \lambda y. x$ is translated as follows:

$$(\lambda x. \lambda y. x) *$$

$$= [x] (\lambda y. x) *$$

$$= [x] ([y] x)$$

$$= [x] (K x)$$

$$= (S ([x] K) ([x] x))$$

$$= S (K K) I$$

No variables in the final combinator term!

We can check that this behaves the same as our original λ -expression by seeing how it evaluates when applied to arbitrary expressions e_1 and e_2 .

$$(\lambda x.\lambda y. x) e_1 e_2$$

 $\rightarrow (\lambda y. e_1) e_2$
 $\rightarrow e_1$

We can check that this behaves the same as our original λ -expression by seeing how it evaluates when applied to arbitrary expressions e_1 and e_2 .

$$(\lambda x.\lambda y. x) e_1 e_2$$

 $\rightarrow (\lambda y. e_1) e_2$
 $\rightarrow e_1$

and

$$(S(K K) I) e_1 e_2$$

$$\rightarrow (K K e_1) (I e_1) e_2$$

$$\rightarrow K e_1 e_2$$

$$\rightarrow e_1$$

SKI Without I

Looking back at our definitions...

$$\begin{array}{l}\mathsf{K}\,e_{1}\,e_{2}\rightarrow e_{1}\\\mathsf{S}\,e_{1}\,e_{2}\,e_{3}\rightarrow e_{1}\,e_{3}\,(e_{2}\,e_{3})\\\mathsf{I}\,e\rightarrow e\end{array}$$

...I isn't strictly necessary. It behaves the same as S K K.

SKI Without I

Looking back at our definitions...

$$\begin{array}{l}\mathsf{K}\,e_{1}\,e_{2}\rightarrow e_{1}\\\mathsf{S}\,e_{1}\,e_{2}\,e_{3}\rightarrow e_{1}\,e_{3}\,(e_{2}\,e_{3})\\\mathsf{I}\,e\rightarrow e\end{array}$$

...I isn't strictly necessary. It behaves the same as S K K.

Our example becomes:

S (K K) (S K K)

Encodings

The pure λ -calculus contains only functions as values. It is not exactly easy to write large or interesting programs in the pure λ -calculus. We can however encode objects, such as booleans, and integers. We need to define functions TRUE, FALSE, AND, NOT, IF, and other operators that behave as follows:

AND TRUE FALSE = FALSE NOT FALSE = TRUE IF TRUE $e_1 e_2 = e_1$ IF FALSE $e_1 e_2 = e_2$ We need to define functions TRUE, FALSE, AND, NOT, IF, and other operators that behave as follows:

AND TRUE FALSE = FALSE NOT FALSE = TRUE IF TRUE $e_1 e_2 = e_1$ IF FALSE $e_1 e_2 = e_2$

Let's start by defining TRUE and FALSE:

We need to define functions TRUE, FALSE, AND, NOT, IF, and other operators that behave as follows:

AND TRUE FALSE = FALSE NOT FALSE = TRUE IF TRUE $e_1 e_2 = e_1$ IF FALSE $e_1 e_2 = e_2$

Let's start by defining TRUE and FALSE:

 $\mathsf{TRUE} \triangleq \lambda x. \ \lambda y. \ x$ $\mathsf{FALSE} \triangleq \lambda x. \ \lambda y. \ y$

$\lambda b. \lambda t. \lambda f.$ if b is our term TRUE then t, otherwise f

```
\lambda b. \lambda t. \lambda f. if b is our term TRUE then t, otherwise f
```

We can rely on the way we defined TRUE and FALSE:

 $\mathsf{IF} \triangleq \lambda b. \, \lambda t. \, \lambda f. \, b \, t \, f$

 $\lambda b. \lambda t. \lambda f.$ if b is our term TRUE then t, otherwise f

We can rely on the way we defined TRUE and FALSE:

 $\mathsf{IF} \triangleq \lambda b. \, \lambda t. \, \lambda f. \, b \, t \, f$

We can also write the standard Boolean operators.

 $\lambda b. \lambda t. \lambda f.$ if b is our term TRUE then t, otherwise f

We can rely on the way we defined TRUE and FALSE:

 $\mathsf{IF} \triangleq \lambda b. \, \lambda t. \, \lambda f. \, b \, t \, f$

We can also write the standard Boolean operators.

NOT $\triangleq \lambda b. b$ FALSE TRUE AND $\triangleq \lambda b_1. \lambda b_2. b_1 b_2$ FALSE OR $\triangleq \lambda b_1. \lambda b_2. b_1$ TRUE b_2

Church Numerals

Let's encode the natural numbers!

We'll write \overline{n} for the encoding of the number n. The central function we'll need is a *successor* operation:

SUCC $\overline{n} = \overline{n+1}$

Church numerals encode a number *n* as a function that takes *f* and *x*, and applies *f* to *x n* times.

$$\overline{\mathbf{0}} \triangleq \lambda f. \, \lambda x. \, x \overline{\mathbf{1}} \triangleq \lambda f. \, \lambda x. \, f \, x \overline{\mathbf{2}} \triangleq \lambda f. \, \lambda x. \, f \, (f \, x)$$

Church numerals encode a number *n* as a function that takes *f* and *x*, and applies *f* to *x n* times.

$$\overline{0} \triangleq \lambda f. \lambda x. x \overline{1} \triangleq \lambda f. \lambda x. f x \overline{2} \triangleq \lambda f. \lambda x. f (f x)$$

We can write a successor function that "inserts" another application of *f*:

SUCC
$$\triangleq \lambda n. \lambda f. \lambda x. f(n f x)$$

Addition

Given the definition of SUCC, we can define addition. Intuitively, the natural number $n_1 + n_2$ is the result of applying the successor function n_1 times to n_2 .

 $\mathsf{PLUS} \triangleq$

Addition

Given the definition of SUCC, we can define addition. Intuitively, the natural number $n_1 + n_2$ is the result of applying the successor function n_1 times to n_2 .

 $\mathsf{PLUS} \triangleq \lambda n_1. \, \lambda n_2. \, n_1 \, \mathsf{SUCC} \, n_2$