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Programming Languages & Logics

Lecture 5
IMP Properties



Command Equivalence

Intuitively, two commands are equivalent if they produce the
same result under any store...

Definition (Equivalence of commands)
Two commands c and c′ are equivalent (written c ∼ c′) if, for any
stores σ and σ′, we have

〈σ, c〉 ⇓ σ′ ⇐⇒ 〈σ, c′〉 ⇓ σ′.
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Command Equivalence

For example, we can prove that everywhile command is
equivalent to its “unrolling”:

Theorem
For all b ∈ Bexp and c ∈ Com,

while b do c ∼ if b then (c;while b do c) else skip

Proof.
We show each implication separately...
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IMP Questions

• Q: Can you write a program that doesn’t terminate?

• A: while true do skip

• Q: Does this mean that IMP is Turing complete?
• A: Not quite... we also need to check the language is not finite
state... but IMP has real mathematical integers.

• Q: What if we replace Intwith Int64?
• A: Then we would lose Turing completeness.

• Q: Howmuch space do we need to represent configurations
during execution of an IMP program?

• A: Can calculate a fixed bound!
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Determinism

Theorem
∀c ∈ Com, σ, σ′ σ′′ ∈ Store.
if 〈σ, c〉 ⇓ σ′ and 〈σ, c〉 ⇓ σ′′ then σ′ = σ′′.

Proof.
By structural induction on c...

Proof.
By induction on the derivation of 〈σ, c〉 ⇓ σ′...
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Derivations

WriteD ⊩ y if the conclusion of derivationD is y.

Example:

Given the derivation,

〈σ, 6〉 ⇓ 6 〈σ, 7〉 ⇓ 7

〈σ, 6× 7〉 ⇓ 42

〈σ, i := 6× 7〉 ⇓ σ[i 7→ 42]

we would write: D ⊩ 〈σ, i := 42〉 ⇓ σ[i 7→ 42]
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Induction on Derivations

Given a set of axioms and inference rules, the set of derivations
is itself an inductively defined set!

This means we can prove properties by induction on derivations!

A derivationD′ is an immediate subderivation ofD ifD′ ⊩ z
where z is one of the premises used of the final rule of derivation
D.

In a proof by induction on derivations, for every inference rule,
assume that the property P holds for all immediate
subderivations, and show that it holds of the conclusion.
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Large-Step Semantics

SKIP
〈σ, skip〉 ⇓ σ

ASSGN
〈σ, a〉 ⇓ n

〈σ, x := a〉 ⇓ σ[x 7→ n]

SEQ
〈σ, c1〉 ⇓ σ′ 〈σ′, c2〉 ⇓ σ′′

〈σ, c1; c2〉 ⇓ σ′′

IF-T
〈σ, b〉 ⇓ true 〈σ, c1〉 ⇓ σ′

〈σ, if b then c1 else c2〉 ⇓ σ′

IF-F
〈σ, b〉 ⇓ false 〈σ, c2〉 ⇓ σ′

〈σ, if b then c1 else c2〉 ⇓ σ′

WHILE-T
〈σ, b〉 ⇓ true 〈σ, c〉 ⇓ σ′ 〈σ′,while b do c〉 ⇓ σ′′

〈σ,while b do c〉 ⇓ σ′′

WHILE-F
〈σ, b〉 ⇓ false

〈σ,while b do c〉 ⇓ σ
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