
CS 4110 – Programming Languages and Logics
Lecture #19: Proving Type Safety for STLC

The end goal of adding types to the 𝜆-calculus is type soundness: the guarantee that any well-
typed program does not get stuck. In this lecture, we’ll prove that the STLC’s type system is
sound.

While the STLC’s type system is fairly simple, the proof will use a structure that we can re-use
to prove soundness in much more complex languages. Every type soundness proof we’ll do in the
class will follow the same rough template—so to structure a new proof, start here and begin by
writing down analogous progress and preservation lemmas.

1 Review: Simply-Typed Lambda Calculus

1.1 Syntax

expressions 𝑒 ::= 𝑥 | 𝜆𝑥 :𝜏. 𝑒 | 𝑒1 𝑒2 | 𝑛 | 𝑒1 + 𝑒2 | ()
values 𝑣 ::= 𝜆𝑥 :𝜏. 𝑒 | 𝑛 | ()
types 𝜏 ::= int | unit | 𝜏1 → 𝜏2

1.2 Dynamic Semantics

We use the small-step operational semantics that we defined using evaluation contexts.

𝐸 ::= [·] | 𝐸 𝑒 | 𝑣 𝐸 | 𝐸 + 𝑒 | 𝑣 + 𝐸

The small-step rules just ignore the type in abstractions.

𝑒 → 𝑒′

𝐸[𝑒] → 𝐸[𝑒′] (𝜆𝑥 :𝜏. 𝑒) 𝑣 → 𝑒{𝑣/𝑥}
𝑛 = 𝑛1 + 𝑛2

𝑛1 + 𝑛2 → 𝑛

1.3 Static Semantics

Here are the rules for our typing judgment, Γ ⊢ 𝑒 :𝜏.

Γ ⊢ 𝑛 : int
T-Int

Γ ⊢ () :unit
T-Unit

Γ ⊢ 𝑒1 : int Γ ⊢ 𝑒2 : int
Γ ⊢ 𝑒1 + 𝑒2 : int

T-Add
Γ(𝑥) = 𝜏

Γ ⊢ 𝑥 :𝜏
T-Var

Γ, 𝑥 :𝜏 ⊢ 𝑒 :𝜏′

Γ ⊢ 𝜆𝑥 :𝜏. 𝑒 :𝜏 → 𝜏′
T-Abs

Γ ⊢ 𝑒1 :𝜏 → 𝜏′ Γ ⊢ 𝑒2 :𝜏
Γ ⊢ 𝑒1 𝑒2 :𝜏′

T-App

1

2 Type Soundness

Here’s a formal statement of the type soundness property we want to the simply-typed 𝜆-calculus:

Theorem (Type soundness). If ⊢ 𝑒 :𝜏 and 𝑒 →∗ 𝑒′ and 𝑒′ ̸→ then 𝑒′ is a value and ⊢ 𝑒′ :𝜏.

We will prove this theorem using two lemmas: preservation and progress. Intuitively, preserva-
tion says that if an expression 𝑒 is well-typed, and 𝑒 can take a step to 𝑒′, then 𝑒′ is well-typed. That
is, evaluation preserves well-typedness. Progress says that if an expression 𝑒 is well-typed, then
either 𝑒 is a value, or there is an 𝑒′ such that 𝑒 can take a step to 𝑒′. That is, well-typedness means
that the expression cannot get stuck.

Together, these two lemmas suffice to prove type soundness. Given the preservation lemma, a
trivial induction on the number of steps taken to reach 𝑒′ from 𝑒 establishes that ⊢ 𝑒′ : 𝜏. Then the
progress lemma ensures that, if 𝑒′ cannot take a step, then it must be a value.

Now we’ll state and prove these two all-important lemmas.

2.1 Preservation

To prove preservation, we will need some extra tiny lemmas.

Lemma (Substitution). If 𝑥 :𝜏′ ⊢ 𝑒 :𝜏 and ⊢ 𝑣 :𝜏′ then ⊢ 𝑒{𝑣/𝑥} :𝜏.

Lemma (Context). If ⊢ 𝐸[𝑒] :𝜏 and ⊢ 𝑒 :𝜏′ and ⊢ 𝑒′ :𝜏′ then ⊢ 𝐸[𝑒′] :𝜏.

We’ll assume these without proof. (They’re not difficult, but the proof of substitution can get
rather long.) Equipped with these little lemmas, we’re ready to move on to the main proof of
preservation.

A quick note on proof strategy: to prove preservation, it’s possible to induct either on the
typing relation or on the small-step relation. Both have their advantages and disadvantages; we’ll
use the small-step relation here.

Lemma (Preservation). If ⊢ 𝑒 :𝜏 and 𝑒 → 𝑒′ then ⊢ 𝑒′ :𝜏.

Proof. Assume ⊢ 𝑒 : 𝜏 and 𝑒 → 𝑒′. We need to show ⊢ 𝑒′ : 𝜏. We will do this by induction on the
derivation of 𝑒 → 𝑒′.

• Add
Here, 𝑒 ≡ 𝑛1 + 𝑛2, and 𝑒′ = 𝑛 where 𝑛 = 𝑛1 + 𝑛2, and 𝜏 = int.
By the typing rule T-Int, we have ⊢ 𝑒′ : int as required.

• 𝛽-reduction
Here, 𝑒 ≡ (𝜆𝑥 :𝜏′. 𝑒1) 𝑣 and 𝑒′ ≡ 𝑒1{𝑣/𝑥}.
Since 𝑒 is well-typed by assumption, we have derivations showing ⊢ 𝜆𝑥 : 𝜏′. 𝑒1 : 𝜏′ → 𝜏 and
⊢ 𝑣 :𝜏′. There is only one typing rule for abstractions, T-Abs, from which we know 𝑥 :𝜏′ ⊢ 𝑒1 :𝜏.
By our substitution lemma above, we have ⊢ 𝑒1{𝑣/𝑥} :𝜏 as required.

2

• Context
Here, we have some context 𝐸 such that 𝑒 = 𝐸[𝑒1] and 𝑒′ = 𝐸[𝑒2] for some 𝑒1 and 𝑒2 such that
𝑒1 → 𝑒2.
Since 𝑒 is well-typed, we can show by induction on the structure of 𝐸 that ⊢ 𝑒1 : 𝜏1 for some
𝜏1. (This simple sub-induction is left as an exercise.)
By the induction hypothesis and because we know 𝑒1 → 𝑒2, we have ⊢ 𝑒2 :𝜏1. (Put intuitively,
𝑒2 has the same type as the one we just established for 𝑒1.)
By our context lemma above, we have ⊢ 𝐸[𝑒2] :𝜏 as required.

2.2 Progress

To prove our progress lemma, we’ll need one extra lemma that gives us the syntax forms for closed
terms.

Lemma (Canonical Forms). If ⊢ 𝑣 :𝜏, then

1. If 𝜏 is int, then 𝑣 is a constant, i.e., some 𝑐.

2. If 𝜏 is 𝜏1 → 𝜏2, then 𝑣 is an abstraction, i.e., 𝜆𝑥 : 𝜏1. 𝑒 for some 𝑥 and 𝑒.

Proof. The proof is by inspection of the typing rules.

i If 𝜏 is int, then the only rule which lets us give a value this type is T-Int.

ii If 𝜏 is 𝜏1 → 𝜏2, then the only rule which lets us give a value this type is T-Abs.

Now we’re ready to prove progress.

Lemma (Progress). If ⊢ 𝑒 :𝜏 then either 𝑒 is a value or there exists an 𝑒′ such that 𝑒 → 𝑒′.

Proof. We proceed by induction on the derivation of ⊢ 𝑒 :𝜏.

• T-Var
This case is impossible, since a variable is not well-typed in the empty environment.

• T-Unit, T-Int, T-Abs
In all of these cases, 𝑒 is a value.

• T-Add
Here 𝑒 ≡ 𝑒1 + 𝑒2 and ⊢ 𝑒1 : int and ⊢ 𝑒2 : int. By the inductive hypothesis, for 𝑖 ∈ {1, 2} (i.e., for
both 𝑒1 and 𝑒2), either 𝑒𝑖 is a value or there is an 𝑒′𝑖 such that 𝑒𝑖 → 𝑒′𝑖 .
If 𝑒1 is not a value, we have from above that 𝑒1 → 𝑒′1. Therefore, by the Context rule,
𝑒1 + 𝑒2 → 𝑒′1 + 𝑒2.
Otherwise, 𝑒1 is a value. If 𝑒2 is not a value, then by Context again, 𝑒1 + 𝑒2 → 𝑒1 + 𝑒′2.
Otherwise, both 𝑒1 and 𝑒2 are values. By our canonical forms lemma, 𝑒1 = 𝑛1 and 𝑒2 = 𝑛2 are
both integer literals. By the Add rule, we have 𝑒1 + 𝑒2 → 𝑛 where 𝑛 = 𝑛1 + 𝑛2.

3

• T-App
Here 𝑒 ≡ 𝑒1 𝑒2 and ⊢ 𝑒1 :𝜏′ → 𝜏 and ⊢ 𝑒2 :𝜏′. By the inductive hypothesis, for 𝑖 ∈ {1, 2}, either
𝑒𝑖 is a value or there is an 𝑒′𝑖 such that 𝑒𝑖 → 𝑒′𝑖 .
If 𝑒1 is not a value, then by the above and by applying the Context rule, 𝑒1 𝑒2 → 𝑒′1 𝑒2.
Otherwise, 𝑒1 is a value. If 𝑒2 is not a value, then by Context, 𝑒1 𝑒2 → 𝑒1 𝑒′2.
If 𝑒1 and 𝑒2 are values, then, by our canonical forms lemma, 𝑒1 is an abstraction 𝜆𝑥 : 𝜏′. 𝑒′.
Therefore, by 𝛽-reduction, we have 𝑒1 𝑒2 → 𝑒′{𝑒2/𝑥}.

3 Type “Completeness”?

Not all expressions in the untyped lambda calculus are well-typed. Type soundness implies that
any lambda calculus program that gets stuck is not well-typed.

But are there programs that do not get stuck that are not well-typed? In other words, does our
type system unjustly rule out legal programs?

Unfortunately, the answer is yes. In particular, because the simply-typed lambda calculus
requires us to specify a type for function arguments, any given function can only take arguments
of one type. Consider, for example, the identity function 𝜆𝑥. 𝑥. This function may be applied to
any argument, and it will not get stuck. However, we must provide a type for the argument. If we
specify 𝜆𝑥 : int. 𝑥, then this function can only accept integers, and the program (𝜆𝑥 : int. 𝑥) () is not
well-typed, even though it does not get stuck. Indeed, in the simply-typed lambda calculus, there
is a different identity function for each type.

4

	Overview
	Products
	Sums
	References
	Fixed Points
	Exceptions

