
CS 4110 – Programming Languages and Logics
Lecture #16: Encodings

0.1 Evaluation contexts

Recall the syntax and CBV operational semantics for the lambda calculus:

𝑒 ::= 𝑥 | 𝜆𝑥. 𝑒 | 𝑒1 𝑒2
𝑣 ::= 𝜆𝑥. 𝑒

𝑒1 → 𝑒′1
𝑒1 𝑒2 → 𝑒′1 𝑒2

𝑒2 → 𝑒′2
𝑣1 𝑒2 → 𝑣1 𝑒′2

𝛽-reduction (𝜆𝑥. 𝑒) 𝑣 → 𝑒{𝑣/𝑥}
Of the operational semantics rules, only the 𝛽-reduction rule told us how to “reduce” an expression;
the other two rules tell us the order to evaluate expressions—e.g., evaluate the left hand side of
an application to a value first, then evaluate the right hand side of an application to a value. The
operational semantics of many of the languages we will consider have this feature: there are two
kinds of rules, congruence rules that specify evaluation order, and the computation rules that specify
the “interesting” reductions.

Evaluation contexts are a simple mechanism that separates out these two kinds of rules. An
evaluation context 𝐸 (sometimes written 𝐸[·]) is an expression with a “hole” in it, that is with
a single occurrence of the special symbol [·] (called the “hole”) in place of a subexpression.
Evaluation contexts are defined using a BNF grammar that is similar to the grammar used to
define the language. The following grammar defines evaluation contexts for the pure CBV 𝜆-
calculus.

𝐸 ::= [·] | 𝐸 𝑒 | 𝑣 𝐸

We write 𝐸[𝑒] to mean the evaluation context 𝐸 where the hole has been replaced with the
expression 𝑒. The following are examples of evaluation contexts, and evaluation contexts with the
hole filled in by an expression.

𝐸1 = [·] (𝜆𝑥. 𝑥) 𝐸1[𝜆𝑦. 𝑦 𝑦] = (𝜆𝑦. 𝑦 𝑦) 𝜆𝑥. 𝑥
𝐸2 = (𝜆𝑧. 𝑧 𝑧) [·] 𝐸2[𝜆𝑥.𝜆𝑦. 𝑥] = (𝜆𝑧. 𝑧 𝑧) (𝜆𝑥.𝜆𝑦. 𝑥)
𝐸3 = ([·] 𝜆𝑥. 𝑥 𝑥) ((𝜆𝑦. 𝑦) (𝜆𝑦. 𝑦)) 𝐸3[𝜆 𝑓 .𝜆𝑔. 𝑓 𝑔] = ((𝜆 𝑓 .𝜆𝑔. 𝑓 𝑔) 𝜆𝑥. 𝑥 𝑥) ((𝜆𝑦. 𝑦) (𝜆𝑦. 𝑦))

Using evaluation contexts, we can define the evaluation semantics for the pure CBV 𝜆-calculus
with just two rules, one for evaluation contexts, and one for 𝛽-reduction.

𝑒 → 𝑒′

𝐸[𝑒] → 𝐸[𝑒′] 𝛽-reduction (𝜆𝑥. 𝑒) 𝑣 → 𝑒{𝑣/𝑥}
Note that the evaluation contexts for the CBV 𝜆-calculus ensure that we evaluate the left hand side
of an application to a value, and then evaluate the right hand side of an application to a value
before applying 𝛽-reduction.

We can specify the operational semantics of CBN 𝜆-calculus using evaluation contexts:

1

𝐸 ::= [·] | 𝐸 𝑒
𝑒 → 𝑒′

𝐸[𝑒] → 𝐸[𝑒′] 𝛽-reduction (𝜆𝑥. 𝑒1) 𝑒2 → 𝑒1{𝑒2/𝑥}
We’ll see the benefit of evaluation contexts as we see languages with more syntactic constructs.

0.2 Multi-argument functions and currying

Our syntax for functions only allows function with a single argument: 𝜆𝑥. 𝑒. We could define a
language that allows functions to have multiple arguments.

𝑒 ::= 𝑥 | 𝜆𝑥1 , . . . , 𝑥𝑛 . 𝑒 | 𝑒0 𝑒1 . . . 𝑒𝑛

Here, a function 𝜆𝑥1 , . . . , 𝑥𝑛 . 𝑒 takes 𝑛 arguments, with names 𝑥1 through 𝑥𝑛 . In a multi argument
application 𝑒0 𝑒1 . . . 𝑒𝑛 , we expect 𝑒0 to evaluate to an 𝑛-argument function, and 𝑒1 , . . . , 𝑒𝑛 are the
arguments that we will give the function.

We can define a CBV operational semantics for the multi-argument 𝜆-calculus as follows.

𝐸 ::= [·] | 𝑣0 . . . 𝑣𝑖−1 𝐸 𝑒𝑖+1 . . . 𝑒𝑛

𝑒 → 𝑒′

𝐸[𝑒] → 𝐸[𝑒′]

𝛽-reduction (𝜆𝑥1 , . . . , 𝑥𝑛 . 𝑒0) 𝑣1 . . . 𝑣𝑛 → 𝑒0{𝑣1/𝑥1}{𝑣2/𝑥2} . . . {𝑣𝑛/𝑥𝑛}
The evaluation contexts ensure that we evaluate a multi-argument application 𝑒0 𝑒1 . . . 𝑒𝑛 by
evaluating each expression from left to right down to a value.

Now, the multi-argument 𝜆-calculus isn’t any more expressive that the pure 𝜆-calculus. We
can show this by showing how any multi-argument 𝜆-calculus program can be translated into
an equivalent pure 𝜆-calculus program. We define a translation function 𝒯 [[·]] that takes an
expression in the multi-argument 𝜆-calculus and returns an equivalent expression in the pure
𝜆-calculus. That is, if 𝑒 is a multi-argument lambda calculus expression, 𝒯 [[𝑒]] is a pure 𝜆-calculus
expression.

We define the translation as follows.

𝒯 [[𝑥]] = 𝑥

𝒯 [[𝜆𝑥1 , . . . , 𝑥𝑛 . 𝑒]] = 𝜆𝑥1. . . . 𝜆𝑥𝑛 .𝒯 [[𝑒]]
𝒯 [[𝑒0 𝑒1 𝑒2 . . . 𝑒𝑛]] = (. . . ((𝒯 [[𝑒0]] 𝒯 [[𝑒1]]) 𝒯 [[𝑒2]]) . . . 𝒯 [[𝑒𝑛]])

This process of rewriting a function that takes multiple arguments as a chain of functions that
each take a single argument is called currying. Consider a mathematical function that takes two
arguments, the first from domain 𝐴 and the second from domain 𝐵, and returns a result from
domain 𝐶. We could describe this function, using mathematical notation for domains of functions,
as being an element of 𝐴 × 𝐵 → 𝐶. Currying this function produces a function that is an element
of 𝐴 → (𝐵 → 𝐶). That is, the curried version of the function takes an argument from domain 𝐴,
and returns a function that takes an argument from domain 𝐵 and produces a result of domain 𝐶.

2

1 𝜆-calculus encodings

The pure 𝜆-calculus contains only functions as values. It is not exactly easy to write large or
interesting programs in the pure 𝜆-calculus. We can however encode objects, such as booleans,
and integers.

1.1 Booleans

Let us start by encoding constants and operators for booleans. That is, we want to define functions
TRUE, FALSE, AND, NOT, IF, and other operators that behave as expected. For example:

AND TRUE FALSE = FALSE
NOT FALSE = TRUE

IF TRUE 𝑒1 𝑒2 = 𝑒1

IF FALSE 𝑒1 𝑒2 = 𝑒2

Let’s start by defining TRUE and FALSE:

TRUE ≜ 𝜆𝑥.𝜆𝑦. 𝑥

FALSE ≜ 𝜆𝑥.𝜆𝑦. 𝑦

Thus, both TRUE and FALSE are functions that take two arguments; TRUE returns the first, and
FALSE returns the second. We want the function IF to behave like

𝜆𝑏.𝜆𝑡.𝜆 𝑓 . if 𝑏 = TRUE then 𝑡 else 𝑓 .

The definitions for TRUE and FALSE make this very easy.

IF ≜ 𝜆𝑏.𝜆𝑡.𝜆 𝑓 . 𝑏 𝑡 𝑓

Definitions of other operators are also straightforward.

NOT ≜ 𝜆𝑏. 𝑏 FALSE TRUE
AND ≜ 𝜆𝑏1.𝜆𝑏2. 𝑏1 𝑏2 FALSE

OR ≜ 𝜆𝑏1.𝜆𝑏2. 𝑏1 TRUE 𝑏2

1.2 Church numerals

Church numerals encode a number 𝑛 as a function that takes 𝑓 and 𝑥, and applies 𝑓 to 𝑥 𝑛 times.

0 ≜ 𝜆 𝑓 .𝜆𝑥. 𝑥

1 = 𝜆 𝑓 .𝜆𝑥. 𝑓 𝑥

2 = 𝜆 𝑓 .𝜆𝑥. 𝑓 (𝑓 𝑥)
SUCC ≜ 𝜆𝑛.𝜆 𝑓 .𝜆𝑥. 𝑓 (𝑛 𝑓 𝑥)

3

In the definition for SUCC, the expression 𝑛 𝑓 𝑥 applies 𝑓 to 𝑥 𝑛 times (assuming that variable 𝑛
is the Church encoding of the natural number 𝑛). We then apply 𝑓 to the result, meaning that we
apply 𝑓 to 𝑥 𝑛 + 1 times.

Given the definition of SUCC, we can easily define addition. Intuitively, the natural number
𝑛1 + 𝑛2 is the result of apply the successor function 𝑛1 times to 𝑛2.

PLUS ≜ 𝜆𝑛1.𝜆𝑛2. 𝑛1 SUCC 𝑛2

4

	Evaluation contexts
	Multi-argument functions and currying
	-calculus encodings
	Booleans
	Church numerals

