

CS 4110

Programming Languages & Logics

Lecture 15
De Bruijn, Combinators, Encodings

Review: λ-calculus

Syntax
e ::= x | e1 e2 | λx. e
v ::= λx. e

Semantics

e1 → e′1
e1 e2 → e′1 e2

e → e′

v e → v e′

(λx. e) v → e{v/x}
β

2

Rewind: Currying

This is just a function that returns a function:

ADD ≜ λx. λy. x+ y

ADD 38 → λy. 38+ y

ADD 38 4 = (ADD 38) 4 → 42

Informally, you can think of it as a curried function that takes
two arguments, one after the other.

But that’s just a way to get intuition. The λ-calculus only has
one-argument functions.

3

de Bruijn Notation

Another way to avoid the tricky issues with substitution is to use
a nameless representation of terms.

e ::= n | λ.e | e e

Abstractions have lost their variables!

Variables are replaced with numerical indices!

4

de Bruijn Notation

Another way to avoid the tricky issues with substitution is to use
a nameless representation of terms.

e ::= n | λ.e | e e

Abstractions have lost their variables!

Variables are replaced with numerical indices!

4

Examples

Here are some terms written in standard and de Bruijn notation:

Standard de Bruijn

λx. x λ. 0

λz. z

λ. 0

λx. λy. x λ. λ. 1

λx. λy. λs. λz. x s (y s z) λ. λ. λ. λ. 3 1 (2 1 0)

(λx. x x) (λx. x x) (λ. 0 0) (λ. 0 0)

(λx. λx. x) (λy. y) (λ. λ. 0) (λ. 0)

5

Examples

Here are some terms written in standard and de Bruijn notation:

Standard de Bruijn

λx. x λ. 0

λz. z λ. 0

λx. λy. x

λ. λ. 1

λx. λy. λs. λz. x s (y s z) λ. λ. λ. λ. 3 1 (2 1 0)

(λx. x x) (λx. x x) (λ. 0 0) (λ. 0 0)

(λx. λx. x) (λy. y) (λ. λ. 0) (λ. 0)

5

Examples

Here are some terms written in standard and de Bruijn notation:

Standard de Bruijn

λx. x λ. 0

λz. z λ. 0

λx. λy. x λ. λ. 1

λx. λy. λs. λz. x s (y s z)

λ. λ. λ. λ. 3 1 (2 1 0)

(λx. x x) (λx. x x) (λ. 0 0) (λ. 0 0)

(λx. λx. x) (λy. y) (λ. λ. 0) (λ. 0)

5

Examples

Here are some terms written in standard and de Bruijn notation:

Standard de Bruijn

λx. x λ. 0

λz. z λ. 0

λx. λy. x λ. λ. 1

λx. λy. λs. λz. x s (y s z) λ. λ. λ. λ. 3 1 (2 1 0)

(λx. x x) (λx. x x)

(λ. 0 0) (λ. 0 0)

(λx. λx. x) (λy. y) (λ. λ. 0) (λ. 0)

5

Examples

Here are some terms written in standard and de Bruijn notation:

Standard de Bruijn

λx. x λ. 0

λz. z λ. 0

λx. λy. x λ. λ. 1

λx. λy. λs. λz. x s (y s z) λ. λ. λ. λ. 3 1 (2 1 0)

(λx. x x) (λx. x x) (λ. 0 0) (λ. 0 0)

(λx. λx. x) (λy. y)

(λ. λ. 0) (λ. 0)

5

Examples

Here are some terms written in standard and de Bruijn notation:

Standard de Bruijn

λx. x λ. 0

λz. z λ. 0

λx. λy. x λ. λ. 1

λx. λy. λs. λz. x s (y s z) λ. λ. λ. λ. 3 1 (2 1 0)

(λx. x x) (λx. x x) (λ. 0 0) (λ. 0 0)

(λx. λx. x) (λy. y) (λ. λ. 0) (λ. 0)

5

Free variables

To represent a λ-expression that contains free variables in de
Bruijn notation, we need a way to map the free variables to
integers.

We will work with respect to a map Γ from variables to integers
called a context.

Examples:
Suppose that Γmaps x to 0 and y to 1.

• Representation of x y is 0 1
• Representation of λz. x y z λ. 1 2 0

6

Shifting

To define substitution, we will need an operation that shifts by i
the variables above a cutoff c:

↑ic (n) =

{
n if n < c
n+ i otherwise

↑ic (λ.e) = λ.(↑ic+1 e)
↑ic (e1 e2) = (↑ic e1) (↑ic e2)

The cutoff c keeps track of the variables that were bound in the
original expression and so should not be shifted.

The cutoff is 0 initially.

7

Substitution

Nowwe can define substitution:

n{e/m} =

{
e if n = m
n otherwise

(λ.e1){e/m} = λ.e1{(↑10 e)/m+ 1}
(e1 e2){e/m} = (e1{e/m}) (e2{e/m})

The β rule for terms in de Bruijn notation is just:

(λ.e1) e2 → ↑−1
0 (e1{↑10 e2/0})

β

8

Substitution

Nowwe can define substitution:

n{e/m} =

{
e if n = m
n otherwise

(λ.e1){e/m} = λ.e1{(↑10 e)/m+ 1}
(e1 e2){e/m} = (e1{e/m}) (e2{e/m})

The β rule for terms in de Bruijn notation is just:

(λ.e1) e2 → ↑−1
0 (e1{↑10 e2/0})

β

8

Example

Consider the term (λu.λv.u x) ywith respect to a context where
Γ(x) = 0 and Γ(y) = 1.

(λ.λ.1 2) 1
→ ↑−1

0 ((λ.1 2){(↑10 1)/0})
= ↑−1

0 ((λ.1 2){2/0})
= ↑−1

0 λ.((1 2){(↑10 2)/(0+ 1)})
= ↑−1

0 λ.((1 2){3/1})
= ↑−1

0 λ.(1{3/1}) (2{3/1})
= ↑−1

0 λ.3 2
= λ.2 1

which, in standard notation (with respect to Γ), is the same as
λv.y x.

9

Example

Consider the term (λu.λv.u x) ywith respect to a context where
Γ(x) = 0 and Γ(y) = 1.

(λ.λ.1 2) 1

→ ↑−1
0 ((λ.1 2){(↑10 1)/0})

= ↑−1
0 ((λ.1 2){2/0})

= ↑−1
0 λ.((1 2){(↑10 2)/(0+ 1)})

= ↑−1
0 λ.((1 2){3/1})

= ↑−1
0 λ.(1{3/1}) (2{3/1})

= ↑−1
0 λ.3 2

= λ.2 1

which, in standard notation (with respect to Γ), is the same as
λv.y x.

9

Example

Consider the term (λu.λv.u x) ywith respect to a context where
Γ(x) = 0 and Γ(y) = 1.

(λ.λ.1 2) 1
→ ↑−1

0 ((λ.1 2){(↑10 1)/0})

= ↑−1
0 ((λ.1 2){2/0})

= ↑−1
0 λ.((1 2){(↑10 2)/(0+ 1)})

= ↑−1
0 λ.((1 2){3/1})

= ↑−1
0 λ.(1{3/1}) (2{3/1})

= ↑−1
0 λ.3 2

= λ.2 1

which, in standard notation (with respect to Γ), is the same as
λv.y x.

9

Example

Consider the term (λu.λv.u x) ywith respect to a context where
Γ(x) = 0 and Γ(y) = 1.

(λ.λ.1 2) 1
→ ↑−1

0 ((λ.1 2){(↑10 1)/0})
= ↑−1

0 ((λ.1 2){2/0})

= ↑−1
0 λ.((1 2){(↑10 2)/(0+ 1)})

= ↑−1
0 λ.((1 2){3/1})

= ↑−1
0 λ.(1{3/1}) (2{3/1})

= ↑−1
0 λ.3 2

= λ.2 1

which, in standard notation (with respect to Γ), is the same as
λv.y x.

9

Example

Consider the term (λu.λv.u x) ywith respect to a context where
Γ(x) = 0 and Γ(y) = 1.

(λ.λ.1 2) 1
→ ↑−1

0 ((λ.1 2){(↑10 1)/0})
= ↑−1

0 ((λ.1 2){2/0})
= ↑−1

0 λ.((1 2){(↑10 2)/(0+ 1)})

= ↑−1
0 λ.((1 2){3/1})

= ↑−1
0 λ.(1{3/1}) (2{3/1})

= ↑−1
0 λ.3 2

= λ.2 1

which, in standard notation (with respect to Γ), is the same as
λv.y x.

9

Example

Consider the term (λu.λv.u x) ywith respect to a context where
Γ(x) = 0 and Γ(y) = 1.

(λ.λ.1 2) 1
→ ↑−1

0 ((λ.1 2){(↑10 1)/0})
= ↑−1

0 ((λ.1 2){2/0})
= ↑−1

0 λ.((1 2){(↑10 2)/(0+ 1)})
= ↑−1

0 λ.((1 2){3/1})

= ↑−1
0 λ.(1{3/1}) (2{3/1})

= ↑−1
0 λ.3 2

= λ.2 1

which, in standard notation (with respect to Γ), is the same as
λv.y x.

9

Example

Consider the term (λu.λv.u x) ywith respect to a context where
Γ(x) = 0 and Γ(y) = 1.

(λ.λ.1 2) 1
→ ↑−1

0 ((λ.1 2){(↑10 1)/0})
= ↑−1

0 ((λ.1 2){2/0})
= ↑−1

0 λ.((1 2){(↑10 2)/(0+ 1)})
= ↑−1

0 λ.((1 2){3/1})
= ↑−1

0 λ.(1{3/1}) (2{3/1})

= ↑−1
0 λ.3 2

= λ.2 1

which, in standard notation (with respect to Γ), is the same as
λv.y x.

9

Example

Consider the term (λu.λv.u x) ywith respect to a context where
Γ(x) = 0 and Γ(y) = 1.

(λ.λ.1 2) 1
→ ↑−1

0 ((λ.1 2){(↑10 1)/0})
= ↑−1

0 ((λ.1 2){2/0})
= ↑−1

0 λ.((1 2){(↑10 2)/(0+ 1)})
= ↑−1

0 λ.((1 2){3/1})
= ↑−1

0 λ.(1{3/1}) (2{3/1})
= ↑−1

0 λ.3 2

= λ.2 1

which, in standard notation (with respect to Γ), is the same as
λv.y x.

9

Example

Consider the term (λu.λv.u x) ywith respect to a context where
Γ(x) = 0 and Γ(y) = 1.

(λ.λ.1 2) 1
→ ↑−1

0 ((λ.1 2){(↑10 1)/0})
= ↑−1

0 ((λ.1 2){2/0})
= ↑−1

0 λ.((1 2){(↑10 2)/(0+ 1)})
= ↑−1

0 λ.((1 2){3/1})
= ↑−1

0 λ.(1{3/1}) (2{3/1})
= ↑−1

0 λ.3 2
= λ.2 1

which, in standard notation (with respect to Γ), is the same as
λv.y x.

9

Example

Consider the term (λu.λv.u x) ywith respect to a context where
Γ(x) = 0 and Γ(y) = 1.

(λ.λ.1 2) 1
→ ↑−1

0 ((λ.1 2){(↑10 1)/0})
= ↑−1

0 ((λ.1 2){2/0})
= ↑−1

0 λ.((1 2){(↑10 2)/(0+ 1)})
= ↑−1

0 λ.((1 2){3/1})
= ↑−1

0 λ.(1{3/1}) (2{3/1})
= ↑−1

0 λ.3 2
= λ.2 1

which, in standard notation (with respect to Γ), is the same as
λv.y x.

9

Combinators

Another way to avoid the issues having to do with free and
bound variable names in the λ-calculus is to work with closed
expressions or combinators.

With just three combinators, we can encode the entire
λ-calculus.

K = λx.λy. x
S = λx.λy.λz. x z (y z)
I = λx. x

10

Combinators

Another way to avoid the issues having to do with free and
bound variable names in the λ-calculus is to work with closed
expressions or combinators.

With just three combinators, we can encode the entire
λ-calculus.

K = λx.λy. x
S = λx.λy.λz. x z (y z)
I = λx. x

10

Combinators

We can even define independent evaluation rules that don’t
depend on the λ-calculus at all.

Behold the “SKI-calculus”:

K e1 e2 → e1
S e1 e2 e3 → e1 e3 (e2 e3)
I e → e

You would never want to program in this language—it doesn’t
even have variables!—but it’s exactly as powerful as the
λ-calculus.

11

Bracket Abstraction

The function [x] that takes a combinator termM and builds
another term that behaves like λx.M:

[x] x = I
[x] N = K N where x ̸∈ fv(N)

[x] N1 N2 = S ([x] N1) ([x] N2)

The idea is that ([x]M) N → M{N/x} for every term N.

12

Bracket Abstraction

We then define a function (e)∗ that maps a λ-calculus
expression to a combinator term:

(x)∗ = x
(e1 e2)∗ = (e1)∗ (e2)∗
(λx.e)∗ = [x] (e)∗

13

Example

As an example, the expression λx.λy. x is translated as follows:

(λx.λy. x)∗
= [x] (λy. x)∗
= [x] ([y] x)
= [x] (K x)
= (S ([x] K) ([x] x))
= S (K K) I

No variables in the final combinator term!

14

Example

We can check that this behaves the same as our original
λ-expression by seeing how it evaluates when applied to
arbitrary expressions e1 and e2.

(λx.λy. x) e1 e2
→ (λy. e1) e2
→ e1

and
(S (K K) I) e1 e2

→ (K K e1) (I e1) e2
→ K e1 e2
→ e1

15

Example

We can check that this behaves the same as our original
λ-expression by seeing how it evaluates when applied to
arbitrary expressions e1 and e2.

(λx.λy. x) e1 e2
→ (λy. e1) e2
→ e1

and
(S (K K) I) e1 e2

→ (K K e1) (I e1) e2
→ K e1 e2
→ e1

15

SKI Without I

Looking back at our definitions...

K e1 e2 → e1
S e1 e2 e3 → e1 e3 (e2 e3)
I e → e

...I isn’t strictly necessary. It behaves the same as S K K.

Our example becomes:

S (K K) (S K K)

16

SKI Without I

Looking back at our definitions...

K e1 e2 → e1
S e1 e2 e3 → e1 e3 (e2 e3)
I e → e

...I isn’t strictly necessary. It behaves the same as S K K.

Our example becomes:

S (K K) (S K K)

16

Encodings

The pure λ-calculus contains only functions as values. It is not
exactly easy to write large or interesting programs in the pure
λ-calculus. We can however encode objects, such as booleans,
and integers.

17

Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and
other operators that behave as follows:

AND TRUE FALSE = FALSE
NOT FALSE = TRUE

IF TRUE e1 e2 = e1
IF FALSE e1 e2 = e2

Let’s start by defining TRUE and FALSE:

TRUE ≜

λx. λy. x

FALSE ≜

λx. λy. y

18

Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and
other operators that behave as follows:

AND TRUE FALSE = FALSE
NOT FALSE = TRUE

IF TRUE e1 e2 = e1
IF FALSE e1 e2 = e2

Let’s start by defining TRUE and FALSE:

TRUE ≜

λx. λy. x

FALSE ≜

λx. λy. y

18

Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and
other operators that behave as follows:

AND TRUE FALSE = FALSE
NOT FALSE = TRUE

IF TRUE e1 e2 = e1
IF FALSE e1 e2 = e2

Let’s start by defining TRUE and FALSE:

TRUE ≜ λx. λy. x

FALSE ≜ λx. λy. y

18

Booleans

Wewant the function IF to behave like

λb. λt. λf. if b is our term TRUE then t, otherwise f

We can rely on the way we defined TRUE and FALSE:

IF ≜ λb. λt. λf. b t f

We can also write the standard Boolean operators.

NOT ≜

λb. b FALSE TRUE

AND ≜

λb1. λb2. b1 b2 FALSE

OR ≜

λb1. λb2. b1 TRUE b2

19

Booleans

Wewant the function IF to behave like

λb. λt. λf. if b is our term TRUE then t, otherwise f

We can rely on the way we defined TRUE and FALSE:

IF ≜ λb. λt. λf. b t f

We can also write the standard Boolean operators.

NOT ≜

λb. b FALSE TRUE

AND ≜

λb1. λb2. b1 b2 FALSE

OR ≜

λb1. λb2. b1 TRUE b2

19

Booleans

Wewant the function IF to behave like

λb. λt. λf. if b is our term TRUE then t, otherwise f

We can rely on the way we defined TRUE and FALSE:

IF ≜ λb. λt. λf. b t f

We can also write the standard Boolean operators.

NOT ≜

λb. b FALSE TRUE

AND ≜

λb1. λb2. b1 b2 FALSE

OR ≜

λb1. λb2. b1 TRUE b2

19

Booleans

Wewant the function IF to behave like

λb. λt. λf. if b is our term TRUE then t, otherwise f

We can rely on the way we defined TRUE and FALSE:

IF ≜ λb. λt. λf. b t f

We can also write the standard Boolean operators.

NOT ≜ λb. b FALSE TRUE

AND ≜ λb1. λb2. b1 b2 FALSE

OR ≜ λb1. λb2. b1 TRUE b2

19

Church Numerals

Let’s encode the natural numbers!

We’ll write n for the encoding of the number n. The central
function we’ll need is a successor operation:

SUCC n = n+ 1

20

Church Numerals

Church numerals encode a number n as a function that takes f
and x, and applies f to x n times.

0 ≜ λf. λx. x
1 ≜ λf. λx. f x
2 ≜ λf. λx. f (f x)

We can write a successor function that “inserts” another
application of f:

SUCC ≜ λn. λf. λx. f (n f x)

21

Church Numerals

Church numerals encode a number n as a function that takes f
and x, and applies f to x n times.

0 ≜ λf. λx. x
1 ≜ λf. λx. f x
2 ≜ λf. λx. f (f x)

We can write a successor function that “inserts” another
application of f:

SUCC ≜ λn. λf. λx. f (n f x)

21

Addition

Given the definition of SUCC, we can define addition. Intuitively,
the natural number n1 + n2 is the result of applying the
successor function n1 times to n2.

PLUS ≜

λn1. λn2. n1 SUCC n2

22

Addition

Given the definition of SUCC, we can define addition. Intuitively,
the natural number n1 + n2 is the result of applying the
successor function n1 times to n2.

PLUS ≜ λn1. λn2. n1 SUCC n2

22

