CS4110

Programming Languages & Logics

Lecture 15
De Bruijn, Combinators, Encodings

Review: \-calculus

Syntax
e = x|eie| e
v = A.e
Semantics
e, — €] e—¢e
e1e; — €| e ve = ve

(M.e)v — e{v/x} 4

Rewind: Currying

This is just a function that returns a function:

ADD £ M. \y.x +y
ADD 38 — \y.38 +y

ADD 38 4 = (ADD 38) 4 — 42

Informally, you can think of it as a curried function that takes
two arguments, one after the other.

But that’s just a way to get intuition. The A-calculus only has
one-argument functions.

de Bruijn Notation

Another way to avoid the tricky issues with substitution is to use
a nameless representation of terms.

ex=n|lelee

de Bruijn Notation

Another way to avoid the tricky issues with substitution is to use
a nameless representation of terms.

ex=n|lelee

Abstractions have lost their variables!

Variables are replaced with numerical indices!

Examples

Here are some terms written in standard and de Bruijn notation:

Standard de Bruijn
AX. X A0

NZ.Z

(6]

Examples

Here are some terms written in standard and de Bruijn notation:

Standard de Bruijn
AX. X A0
N2.Z A0

M. AY. X

(6]

Examples

Here are some terms written in standard and de Bruijn notation:

Standard de Bruijn
AX. X A0

AZ. Z A0

M. AY. X A AL

MY AS. Az xs (ysz)

(6]

Examples

Here are some terms written in standard and de Bruijn notation:

Standard de Bruijn
AX. X A0

AZ. Z A0

M. AY. X A AL

MY AS. Az xs(Ysz) A A A A.31(210)
(M. xx) (Ax. xx)

(6]

Examples

Here are some terms written in standard and de Bruijn notation:

Standard de Bruijn

AX. X A0

NZ.Z A0

M. AY. X A AL

MY AS. Az xs(Ysz) A A A A.31(210)
(M. xx) (Ax. xx) (A\.00) (X.00)

(M. M. x) (Ay. y)

(6]

Examples

Here are some terms written in standard and de Bruijn notation:

Standard

AX. X

NZ.z

M. AY. X

MY AS. Az xs (ysz)
(M. xx) (Ax. xx)

(M. M. x) (Ay. y)

de Bruijn

A. 0

A0

AA1

A A A AN31(210)
(A\.00) (X.00)

(A A.0) (N 0)

(6]

Free variables

To represent a A\-expression that contains free variables in de
Bruijn notation, we need a way to map the free variables to
integers.

We will work with respect to a map I from variables to integers
called a context.

Examples:
Suppose that ' maps xto 0 and y to 1.

® Representation of xyis 01
e Representationof \z.xyz\. 120

Shifting

To define substitution, we will need an operation that shifts by i
the variables above a cutoff c:

100 = {0y e

n +l otherW|se
Tlc (Ae) = A(cr1 €
T (e1e) = (1% e1) (T' e;)

The cutoff ¢ keeps track of the variables that were bound in the
original expression and so should not be shifted.

The cutoff is 0 initially.

Substitution

Now we can define substitution:

nle/m} = {5 Gimerwie
(X.e;){e/m} Ae{(15 e)/m+ 1}

(e1e){e/m} = (er{e/m})(e2{e/m})

Substitution

Now we can define substitution:

ifn —
n{e/m} = i otI:\ervc:se

(e){e/m} = Xe{(T5e)/m+1}

(ere){e/m} = (ei{e/m}) (e2{e/m})

The (rule for terms in de Bruijn notation is just:

Cele > 1o (@il e)o))

Example

Consider the term (Au.\v.u x) y with respect to a context where
M(x)=0andTl(y) = 1.

Example

Consider the term (Au.\v.u x) y with respect to a context where
M(x)=0andTl(y) = 1.

(AX12)1

Example

Consider the term (Au.\v.u x) y with respect to a context where
M(x)=0andTl(y) = 1.

(AX12)1
= 1o (A12){(151)/0})

Example

Consider the term (Au.\v.u x) y with respect to a context where

(x)=0andl(y) =

(\112)1
= Too (A12){(151)/0})
= To ((A-12){2/0})

o (

Example

Consider the term (Au.\v.u x) y with respect to a context where
M(x)=0andl(y) =

A12)1
(A-12){(15 1)/0})
(A1 2){2/0})

“(
-
A 2){(152)/(0+1)})

o

(A

To
To
To

Example

Consider the term (Au.\v.u x) y with respect to a context where

M(x)=0andl(y) =

()\.)\.1 2

To ((A

((A

To A((12
A((12

{(151)/0})
2/0})
{(12)/(0+1)})
{(3/1})

)1
12
12

[T

//vv

Example

Consider the term (Au.\v.u x) y with respect to a context where
M(x)=0andl(y) =

(AAla

o (A12){(151)/0})
((A 1 2){2/0})
A((12){(152)/(0+1)})
A((12){3/1})
T’l A(1{3/1}) (2{3/1})

4

Example

Consider the term (Au.\v.u x) y with respect to a context where
M(x)=0andl(y) =

(AAla

o (A12){(151)/0})

((A 1 2){2/0})
A((12){(152)/(0+1)})

A((12){3/1})

T*l A(1{3/1}) (2{3/1})
1ot A32

4

Example

Consider the term (Au.\v.u x) y with respect to a context where
M(x)=0andl(y) =

(AAla

o (A12){(151)/0})
((A 1 2){2/0})
A((12){(152)/(0+1)})
((12){3/1})
T*l A-(1{3/1}) (2{3/1})
1ot A32
A21

o

Example

Consider the term (Au.\v.u x) y with respect to a context where
M(x)=0andl(y) =

(AAla

o (A12){(151)/0})
((A 1 2){2/0})
A((12){(152)/(0+1)})
((12){3/1})
*1 A-(1{3/1}) (2{3/1})
1ot A32
A21

o

which, in standard notation (with respect to I'), is the same as
AV.Y X.

Combinators

Another way to avoid the issues having to do with free and
bound variable names in the A-calculus is to work with closed
expressions or combinators.

With just three combinators, we can encode the entire
A-calculus.

10

Combinators

Another way to avoid the issues having to do with free and
bound variable names in the A-calculus is to work with closed
expressions or combinators.

With just three combinators, we can encode the entire
A-calculus.

K= MA\y. x
S =M.z xz(y2)
| = M. x

Combinators

We can even define independent evaluation rules that don’t
depend on the A-calculus at all.

Behold the “SKl-calculus”:

Ke,e, — e;
Sejee3 — e e;(ere3)
le —» e

You would never want to program in this language—it doesn’t
even have variables!—but it’s exactly as powerful as the
A-calculus.

Bracket Abstraction

The function [x] that takes a combinator term M and builds
another term that behaves like A\x.M:

X]x =1
X]N = KN where x & fv(N)
AN N2 = S ([N1) (X N2)

The ideais that ([x] M) N — M{N/x} for every term N.

12

Bracket Abstraction

We then define a function (e)* that maps a A-calculus
expression to a combinator term:

(xX)x = x

(e1e)x = (er)* (ex)x*
(Mx.e)x = [x](e)x

13

Example

As an example, the expression \x.\y. x is translated as follows:

(AX Y. X)*
= [X] (\y. x)x
= (W)
= [X(Kx)
= (S ([K) (x]x))
= S(KK)I

No variables in the final combinator term!

14

Example

We can check that this behaves the same as our original
A-expression by seeing how it evaluates when applied to
arbitrary expressions e; and e,.

(AMCAY. X) er e;
— (\.e1)e
— €

Example

We can check that this behaves the same as our original
A-expression by seeing how it evaluates when applied to
arbitrary expressions e; and e,.

(AMCAY. X) er e;
— (\.e1)e
— €

and
(S(KK)1) e, e,

I
(KKey)(lep) e,
Ke; e,
€1

USN

SKI Without |

Looking back at our definitions...

Keje, = e
Se;e,e3 — er1e3(e;e3)
le — e

...l isn’t strictly necessary. It behaves the same as SKK.

16

SKI Without |

Looking back at our definitions...
Keie, — e;

Se;e,e3 — er1e3(e;e3)
le — e

...l isn’t strictly necessary. It behaves the same as SKK.

Our example becomes:

S (KK) (SKK)

16

Encodings

The pure A-calculus contains only functions as values. It is not
exactly easy to write large or interesting programs in the pure
A-calculus. We can however encode objects, such as booleans,
and integers.

17

Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and
other operators that behave as follows:

AND TRUE FALSE = FALSE
NOT FALSE = TRUE
IFTRUEe; e; = €
IF FALSEe; e, = €,

18

Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and
other operators that behave as follows:

AND TRUE FALSE = FALSE
NOT FALSE = TRUE
IFTRUEe; e; = €
IF FALSEe; e, = €,

Let’s start by defining TRUE and FALSE:

[I>

TRUE
FALSE £

18

Booleans

We need to define functions TRUE, FALSE, AND, NOT, IF, and
other operators that behave as follows:

AND TRUE FALSE = FALSE
NOT FALSE = TRUE
IFTRUEe; e; = €
IF FALSEe; e, = €,

Let’s start by defining TRUE and FALSE:

TRUE £ \x. \y. x
FALSE £)\x. \y.y

18

Booleans

We want the function IF to behave like

Ab. At. M. if bis our term TRUE then t, otherwise f

19

Booleans

We want the function IF to behave like
Ab. At. M. if bis our term TRUE then t, otherwise f
We can rely on the way we defined TRUE and FALSE:

IF2 M. AN btS

19

Booleans

We want the function IF to behave like
Ab. At. M. if bis our term TRUE then t, otherwise f
We can rely on the way we defined TRUE and FALSE:
IF 2 Ab. At A.btF
We can also write the standard Boolean operators.

NOT £
AND =
OR £

19

Booleans

We want the function IF to behave like
Ab. At. M. if bis our term TRUE then t, otherwise f
We can rely on the way we defined TRUE and FALSE:
IF 2 Ab. At A.btF
We can also write the standard Boolean operators.

NOT £ \b. b FALSE TRUE
AND £ \b;. \b,. by b, FALSE
OR £ \b;. \b,. b; TRUE b,

Church Numerals

Let’s encode the natural numbers!

We’ll write n for the encoding of the number n. The central
function we’ll need is a successor operation:

SUCCn=n+1

20

Church Numerals

Church numerals encode a number n as a function that takes f
and x, and applies fto x n times.

M. x
M. x. fx
M. f(Fx)

N | Ol
(> > >

21

Church Numerals

Church numerals encode a number n as a function that takes f
and x, and applies fto x n times.

0 2 MMx
1 £ MM fx
7 2 M F(fX)

We can write a successor function that “inserts” another
application of f:

SUCC £ An. M. \x. f(nfx)

21

Addition

Given the definition of SUCC, we can define addition. Intuitively,
the natural number n; + n, is the result of applying the
successor function n; times to n,.

PLUS £

22

Addition

Given the definition of SUCC, we can define addition. Intuitively,
the natural number n; + n, is the result of applying the
successor function n; times to n,.

PLUS £ \n;. An,. n; SUCC n,

22

