CS4110

Programming Languages & Logics

Lecture 14
More \-calculus



Review: \-calculus

Syntax
e = x|eie| e

Semantics (call by value)

e, — €] e —¢é

e1e; — €| e ve —»ve'

(M.e)v — e{v/x} 4



Example: Twice

Consider the function defined by double x = x + x.
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Example: Twice

Consider the function defined by double x = x + x.

Now suppose we want to apply double multiple times:

quadruple x = double (double x)
hexadecatuple x = quadruple (quadruple x)
256uplex = hexadecatuple (hexadecatuple x)

We can abstract this pattern using a generic function:
twice = M. \x. f(fx)

Now the functions above can be written as

quadruple = twice double
hexadecatuple = twice quadruple
256uple = twice hexadecatuple

(or (twice (Mx. twice x)) double)



Evaluation

The essence of A-calculus evaluation is the S-reduction rule,
which says how to apply a function to an argument.

Ox.e)v = e{v/x} [B-REDUCTION

But there are many different evaluation strategies, each
corresponding to particular ways of using S-reduction:
e Call-by-value

e Call-by-name

e “Full” B-reduction



Call by value

e, — €] e, — €,
e1e; — €] e Vi€, —> Vi €)

(Mx.e1) va — er{vy/x} p

Key characteristics:

e Arguments evaluated fully before they are supplied to
functions

e Evaluation goes from left to right (in this presentation)
e Wedon’t evaluate “undera \”

(6]



Call by name

ey — €]
e1e; — e} e

(Mx.e1) e, — er{er/x} B

Key characteristics:
e Arguments supplied immediately to functions

e Evaluation still goes from left to right (in this presentation)
e Westill don’t evaluate “undera \”



Full 2 reduction

e, — €} e, — €
e1e; — e e €16, — e e,

e—¢e
M.e — . e

B
()\X el) €, — el{ez/X}
Key characteristics:
e Use the § rule anywhere...
e ..including “undera \”...
e ...nondeterministically.



Confluence

Full 8 reduction has this property:

e
7N
€, ()
NS

e



Confluence

Full 8 reduction has this property:

e
7N
€, ()
NS

e

Theorem (Confluence)

Ife >*e;ande —* e, thene; —* € and e, —* €’ forsome €'.



Substitution

The main workhorse in the (3 rule is substitution, which replaces
free occurrences of a variable x with a term e.

However, defining substitution e; {e, /x} correctly is tricky...



“Substitution”

As a first attempt, consider:

Vet = |

e ify=x
y otherwise
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“Substitution”

As a first attempt, consider:

e/xp =

(e1€:){e/x}
(Ay.e:){e/x}

e ify=x
y otherwise

(ex{e/x}) (e2{e/x})

= \y.e;{e/x}
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“Substitution”

As a first attempt, consider:

ify =x
yie/x} )e/ ot{lerwise
(e1ex){e/x} = (ei{e/x}) (e2{e/x})

(\v.e1){e/x} = My.ei{e/x}

What’s wrong with this definition?
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“Substitution”

As a first attempt, consider:

ify =x
yle/xt = )e/ ot);lerwise
(e1ex){e/x} = (ei{e/x}) (e2{e/x})

(\v.e1){e/x} = My.ei{e/x}
What’s wrong with this definition?

It substitutes bound variables too!

Ay {3/y} = (\r.3)
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““Substitution””

Okay... let’s avoid rewriting bound variables by relying on
a-equivalence. We’ll require that abstractions don’t use x, the

variable we’re substituting.
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““Substitution””

Okay... let’s avoid rewriting bound variables by relying on
a-equivalence. We'll require that abstractions don’t use x, the
variable we’re substituting.

ify =x
yle/xt = )e/ ot};erwise
(exex){e/x} = (er{e/x})(ex{e/x})
(\v.e1){e/x} = My.e{e/x} wherey # x

We assume away abstractions over x. (Thanks, a-equivalence!)
What’s wrong with this definition?

It leads to variable capture!

(A /xt = (\y)



Real Substitution

The correct definition is capture-avoiding substitution:

ify =x
yle/xt = ; ot);merwise
(exex){e/x} = (e{e/x}) (e2{e/x})

(\v.e1){e/x} = My.(ei{e/x}) wherey # xand y ¢ fv(e)

where fv(e) is the free variables of a term e.
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