

CS 4110

Programming Languages & Logics

Lecture 11
More Hoare Logic

Overview

Last time
• Hoare Logic

Today
• “Decorated” programs
• Weakest Preconditions

2

Review: Hoare Logic

⊢ {P} skip {P}
SKIP

⊢ {P[a/x]} x := a {P}
ASSIGN

⊢ {P} c1 {R} ⊢ {R} c2 {Q}
⊢ {P} c1; c2 {Q}

SEQ

⊢ {P ∧ b} c1 {Q} ⊢ {P ∧ ¬b} c2 {Q}
⊢ {P} if b then c1 else c2 {Q}

IF

⊢ {P ∧ b} c {P}
⊢ {P}while b do c {P ∧ ¬b}

WHILE

|= P⇒ P′ ⊢ {P′} c {Q′} |= Q′ ⇒ Q
⊢ {P} c {Q}

CONSEQUENCE

3

Decorated Programs

Observation: Once we’ve identified loop invariants and uses of
consequence, the structure of a Hoare logic is determined!

Notation: Can write proofs by “decorating” programs with:
• A precondition ({P})
• A postcondition ({Q})
• Invariants ({I}while b do c)
• Uses of consequence {R} ⇒ {S}
• Assertions between sequences c1; {T}c2

A decorated program describes a valid Hoare logic proof if the
rest of the proof tree’s structure is implied. (Caveats: Invariants
are constrained, etc.)

4

Example: Decorated Factorial

{x = n ∧ n > 0}
y := 1;
while x > 0 do {

y := y ∗ x;
x := x− 1

}
{y = n!}

5

Example: Decorated Factorial

{x = n ∧ n > 0} ⇒
{1 = 1 ∧ x = n ∧ n > 0}
y := 1;
{y = 1 ∧ x = n ∧ n > 0} ⇒
{y ∗ x! = n! ∧ x ≥ 0}
while x > 0 do {

{y ∗ x! = n! ∧ x > 0 ∧ x ≥ 0} ⇒
{y ∗ x ∗ (x− 1)! = n! ∧ (x− 1) ≥ 0}
y := y ∗ x;
{y ∗ (x− 1)! = n! ∧ (x− 1) ≥ 0}
x := x− 1
{y ∗ x! = n! ∧ x ≥ 0}

}
{y ∗ x! = n! ∧ (x ≥ 0) ∧ ¬(x > 0)} ⇒
{y = n!}

5

Informal Rules for Decoration

Check whether a decorated program represents a valid proof
using local consistency checks.

For skip, the precondition and postcondition should be the
same:

{P}
skip
{P}

6

Informal Rules for Decoration

Check whether a decorated program represents a valid proof
using local consistency checks.

For skip, the precondition and postcondition should be the
same:

{P}
skip
{P}

6

Informal Rules for Decoration

For sequences, {P} c1 {R} and {R} c2 {Q}must be (recursively)
locally consistent:

{P}
c1;
{R}
c2
{Q}

7

Informal Rules for Decoration

Assignment should use the substitution from the rule:

{P[a/x]}
x := a
{P}

8

Informal Rules for Decoration

An if is locally consistent when both branches are locally
consistent after adding the branch condition to each:

{P}
if b then
{P ∧ b}
c1
{Q}

else
{P ∧ ¬b}
c2
{Q}

{Q}

9

Informal Rules for Decoration

Decorate awhilewith the loop invariant:

{P}
while b do
{P ∧ b}
c
{P}

{P ∧ ¬b}

10

Informal Rules for Decoration

To capture the CONSEQUENCE rule, you can always write a (valid)
implication:

{P} ⇒
{Q}

11

Example

{

x = m ∧ y = n ∧ 0 ≤ n

}
while (0 < y) do (

x := x+ 1;
y := y− 1

)

{

x = m+ n

}

12

Example

{x = m ∧ y = n ∧ 0 ≤ n}
while (0 < y) do (

x := x+ 1;
y := y− 1

)

{x = m+ n}

12

Example

{x = m ∧ y = n ∧ 0 ≤ n} ⇒
{I}
while (0 < y) do (
{I ∧ 0 < y} ⇒
{I[y− 1/y][x+ 1/x]}
x := x+ 1;
{I[y− 1/y]}
y := y− 1
{I}

)
{I ∧ 0 ≮ y} ⇒
{x = m+ n}

Where I is (x = m+ n− y) ∧ 0 ≤ y.

13

Example

{

true

}
while (x ̸= 0) do (

x := x− 1
)

{

x = 0

}

14

Example

{true}
while (x ̸= 0) do (

x := x− 1
)

{x = 0}

14

Example

{

x = n ∧ 0 ≤ n

}
y := 1
while (0 < x) do (

x := x− 1;
y := y ∗ 2

)

{

y = 2n

}

15

Example

{x = n ∧ 0 ≤ n}
y := 1
while (0 < x) do (

x := x− 1;
y := y ∗ 2

)

{y = 2n}

15

