
CS 4110
Probabilistic Programming



Probabilistic Programming

It's not about writing software.



Probabilistic Programming
Probabilistic programming is 
a tool for statistical modeling.

OR

A probabilistic programming language

is a plain old programming language

with rand(3) and a suite of fancy analysis tools

for understanding its probabilistic behavior.



An Example Model

PL+stats PL stats

Takes
CS 4242

Takes 
CS 4110

Takes
CS 4780

Paper 2
Relevant

Paper 3
Relevant

Paper 1
Relevant

Cloud of Unknowing



A Model for Humans

Interest
in PL

Interest
in Stats

Takes
CS 4242

Takes 
CS 4110

Takes 
CS 4780



A Model for Humans

Interest
in PL

Interest
in Stats

Takes
CS 4242

Takes 
CS 4110

Takes
CS 4780

Busy?



A Model for Humans

Interest
in PL

Interest
in Stats

Takes
CS 4242

Takes 
CS 4110

Takes
CS 4780

Busy? Interest
in PL

Interest
in Stats

Paper 2
Relevant

Paper 3
Relevant

Paper 1
Relevant



A Model for Humans
Pr[ANIPS|Istats ^B] = 0.3

Pr[ANIPS|Istats ^ ¬B] = 0.8
Pr[ANIPS|¬Istats] = 0.1

Pr[ADagstuhl|Istats ^ IPL] = 0.3
Pr[ADagstuhl|Istats ^ IPL ^ ¬B] = 0.8

Pr[ADagstuhl|¬(Istats _ IPL)] = 0.1

R1 ⇠ IPL ^ Istats

R3 ⇠ Istats
R2 ⇠ IPL

…

…

Whither

reuse?

Whither

abstraction?

Whither

intermediate

variables?



Writing even this tiny model

feels like drudgery.

(and we haven’t even gotten to the hard part yet)



• What and Why


• The Basics and Examples 

• Applications


• Current Problems



webppl.org



Our First

Probabilistic Program

var b = flip(0.5); 
b ? "yes" : "no"



Enumeration

var roll = function () { 
  var die1 = randomInteger(6) + 1; 
  var die2 = randomInteger(6) + 1; 
  return die1 + die2; 
} 

Enumerate(roll)



Our Basic Model in webppl



Conditioning
var roll = function () { 
  var die1 = randomInteger(6) + 1; 
  var die2 = randomInteger(6) + 1; 
  if (!(die1 === 4 || die2 === 4)) { 
    factor(-Infinity); 
  } 
  return die1 + die2; 
} 

Enumerate(roll)



Conditioning

on Observations
// Discard any executions that 
// don’t sum to 10. 
var out = die1 + die2; 
if (out !== 10) { 
  factor(-Infinity); 
} 

// Return the values on the dice. 
return [die1, die2]; 



Recommending Papers

// Require my class attendance. 
var att = attendance(i_pl, i_stats, 
                     busy); 
require(att.cs4110 && att.cs4242 
        && !att.cs4780); 

return relevance(i_pl, i_stats); 



Inference Algorithms
Enumerate is the simplest possible inference strategy.



• What and Why


• The Basics and Examples


• Applications 

• Current Problems



TrueSkill

the skills of players given the outcomes of the matches. Here is a concrete example: Al-
ice, Bob, and Cyd are new players. In a tournament of three games, Alice beats Bob,
Bob beats Cyd, and Alice beats Cyd. What are their skills? In a Bayesian setting, we
represent our uncertain knowledge of the skills as continuous probability distributions.
The following probabilistic expression models the situation by generating probability
distributions for the players’ skills, given three played games (observations).

// prior distributions, the hypothesis
let skill() = random (Gaussian(10.0,20.0))
let Alice,Bob,Cyd = skill(),skill(),skill()
// observe the evidence
let performance player = random (Gaussian(player,1.0))
observe (performance Alice > performance Bob) //Alice beats Bob
observe (performance Bob > performance Cyd) //Bob beats Cyd
observe (performance Alice > performance Cyd) //Alice beats Cyd
// return the skills
Alice,Bob,Cyd

A run of this expression goes as follows. We sample the skills of the three players from
the prior distribution Gaussian(10.0,20.0). Such a distribution can be pictured as a
bell curve centred on the mean 10.0, and gradually tailing off at a rate given by the
variance, here 20.0. Sampling from such a distribution is a randomized operation that
returns a real number, most likely close to the mean. For each match, the run continues
by sampling an individual performance for each of the two players. Each performance is
centred on the skill of a player, with low variance, making the performance closely cor-
related with but not identical to the skill. We then observe that the winner’s performance
is greater than the loser’s. An observation observe M always returns (), but represents
a constraint that M must hold. A whole run is valid if all encountered observations are
true. The run terminates by returning the three skills.

A classic computational method to learn the posterior distribution of each of the
skills is Monte Carlo sampling [25]. We run the expression many times, but keep just the
valid runs—the ones where the sampled skills correspond to the observed outcomes. We
then compute the means of the resulting skills by applying standard statistical formulas.
In the example above, the posterior distribution of the returned skills has moved so that
the mean of Alice’s skill is greater than Bob’s, which is greater than Cyd’s. To the
best of our knowledge, all prior inference techniques for probabilistic languages with
continuous distributions, apart from Csoft and recent versions of IBAL [37], are based
on nondeterministic inference using some form of Monte Carlo sampling.

Inference algorithms based on factor graphs [22,19] are an efficient alternative to
Monte Carlo sampling. Factor graphs, used in Csoft, allow deterministic but approx-
imative inference algorithms, which are known to be significantly more efficient than
sampling methods, where applicable.

Observations with zero probability arise naturally in Bayesian models. For example,
in the model above, a drawn game would be modelled as the performance of two players
being observed to be equal. Since the performances are randomly drawn from a contin-
uous distribution, the probability of them actually being equal is zero, so we would not
expect to see any valid runs in a Monte Carlo simulation. (To use Monte Carlo methods,

4

Measure Transformer Semantics for
Bayesian Machine Learning

Johannes Borgström Andrew D. Gordon
Michael Greenberg James Margetson Jurgen Van Gael

July 2011

Technical Report
MSR-TR-2011-18

Microsoft Research
Roger Needham Building
7 J.J. Thomson Avenue
Cambridge, CB3 0FB

United Kingdom



webppl Vision Demo

http://webppl.org


Forestdb.org



• What and Why


• The Basics and Examples


• Applications


• Current Research



R2



R2’s weakest preconditions

var die1 = randomInteger(7) + 1; 
var die2 = randomInteger(7) + 1; 

// Discard any executions that 
// don’t sum to 10. 
var out = die1 + die2; 
require(out === 10);

wasted work!



R2’s weakest preconditions

var die1 = randomInteger(7) + 1; 
var die2 = randomInteger(7) + 1; 

require( 
  (die1 == 3 && die2 == 7) || …); 
var out = die1 + die2; 
require(out === 10);



R2’s weakest preconditions

var die1 = randomInteger(7) + 1; 
var die2 = randomInteger(7) + 1; 

require( 
  (die1 == 3 && die2 == 7) || …); 
var out = die1 + die2; 



Probabilistic assertions:

design goals

Work on a messy, mainstream language (C and C++)

Efficiently check statistical properties of the output

We don’t care about conditioning



assert ep , p, c

e must hold with probability p
at confidence c



passert e, p, c

float obfuscated(float n) {
  return n + gaussian(0.0, 1000.0);
}
float average_salary(float* salaries) {
  total = 0.0;
  for (int i = 0; i < COUNT; ++i)
    total += obfuscated(salaries[i]);
  avg = total / len(salaries);
  p_avg = ...;

}

Bayesian network IR

✓

distribution extraction 
via symbolic execution statistical 

optimizations

verification



Bayesian network IR

✓

distribution extraction 
via symbolic execution statistical 

optimizations

verification

passert e, p, c

float obfuscated(float n) {
  return n + gaussian(0.0, 1000.0);
}
float average_salary(float* salaries) {
  total = 0.0;
  for (int i = 0; i < COUNT; ++i)
    total += obfuscated(salaries[i]);
  avg = total / len(salaries);
  p_avg = ...;

}



Distribution extraction: 
random draws are symbolic

b = a + gaussian(0.0, 1.0)

a 4.2
symbolic heap

a 4.2
b G0,14.2 +



input: a = 4.2
b = gaussian(0.0, 1.0)

a 4.2

b G0,1



input: a = 4.2
b = gaussian(0.0, 1.0)
c = a + b

a 4.2

b G0,1

c +



input: a = 4.2
b = gaussian(0.0, 1.0)
c = a + b
d = c + b

a 4.2

b G0,1

c +

d +



input: a = 4.2
b = gaussian(0.0, 1.0)
c = a + b
d = c + b

a
4.2

b
G0,1

c
+

d +



input: a = 4.2
b = gaussian(0.0, 1.0)
c = a + b
d = c + b
if b > 0.5
  e = 2.0
else
  e = 4.0

a
4.2

G0,1

c
+

d +

?e
if

2.0

4.0

then

else

b

>
0.5



input: a = 4.2
b = gaussian(0.0, 1.0)
c = a + b
d = c + b
if b > 0.5
  e = 2.0
else
  e = 4.0
passert e <= 3.0,
        0.9, 0.9

a
4.2

G0,1

c
+

d +

?e
if

2.0

4.0

then

else

b

>
0.5

≤

3.0



passert e, p, c

float obfuscated(float n) {
  return n + gaussian(0.0, 1000.0);
}
float average_salary(float* salaries) {
  total = 0.0;
  for (int i = 0; i < COUNT; ++i)
    total += obfuscated(salaries[i]);
  avg = total / len(salaries);
  p_avg = ...;

}

Bayesian network IR

✓

distribution extraction 
via symbolic execution statistical 

optimizations

verification



statistical 
property

passert verifier 
optimization

X ⇠ G(µX ,�2
X )

Y ⇠ G(µY ,�2
Y )

Z = X + Y
) Z ⇠ G(µX + µY ,�2

X + �2
Y )

X ⇠ U(a, b)

Y = cX

) Y ⇠ U(ca, cb)

X ⇠ U(a, b)
Y ⇠ X  c
a  c  b

) Y ⇠ B
✓
c� a
b� a

◆
X1, X2, . . . , Xn ⇠ D

Y =
X

i

Xi

) Y ⇠ G(nµD, n�
2
D)



passert e, p, c

float obfuscated(float n) {
  return n + gaussian(0.0, 1000.0);
}
float average_salary(float* salaries) {
  total = 0.0;
  for (int i = 0; i < COUNT; ++i)
    total += obfuscated(salaries[i]);
  avg = total / len(salaries);
  p_avg = ...;

}

Bayesian network IR

✓

distribution extraction 
via symbolic execution statistical 

optimizations

verification


