
CS 4110 – Programming Languages and Logics
Lecture #11: Relative Completeness

1 Relative Completeness

Previously, we discussed the issue of completeness—i.e., whether it is possible to derive every
valid partial correctness specification using the axioms and rules of Hoare logic. Unfortunately,
if treated as a pure deductive system, Hoare logic cannot be complete. To see why, consider the
following partial correctness specifications:

{true} skip {P} {true} c {false}

The first is valid if and only if the assertion P is valid while the second is valid if and only if the
command c does not halt.

It turns out that the culprit is the Consequence rule,

Consequence
⊨ (P ⇒ P′) {P′} c {Q′} ⊨ (Q′ ⇒ Q)

{P} c {Q}

which includes two premises about the validity of implications between the assertions involved.
Proving those implications for our two examples would require proving arbitrary logical predicates
P and proving that arbitrary IMP programs c terminate. By Gödel’s incompleteness theorem, we
know that there is no consistent mathematical proof system that can do the former. Therefore,
Hoare logic cannot be complete in that sense.

On the other hand, Hoare logic does enjoy this property:

Theorem. ∀P,Q ∈ Assn, c ∈ Com. ⊨ {P} c {Q} implies ⊢ {P} c {Q}.

This result, due to Cook (1974), is known as the relative completeness of Hoare logic. It says that
Hoare logic is no more incomplete than the language of assertions—i.e., if we had an oracle that
could decide the validity of assertions, then we could decide the validity of partial correctness
specifications. In other words, for any valid Hoare triple, there exists a proof in Hoare logic—as
long as you have some external way to decide the validity of the premises to the Consequence rule.

2 Weakest Liberal Preconditions

Cook’s proof of relative completeness depends on the notion of weakest liberal preconditions. Given
a command c and a postcondition Q, the weakest liberal precondition is the weakest assertion P
such that {P} c {Q} is valid. Here, “weakest” means that any other valid precondition implies P.
That is, P most accurately describes input states for which c either does not terminate or ends up
in a state satisfying Q.

Formally, an assertion P is a weakest liberal precondition of c and Q if:

∀σ, I . σ ⊨I P ⇐⇒ (C[[c]] σ) is undefined ∨ (C[[c]]σ) ⊨I Q

1



We write wlp(c ,Q) for the weakest liberal precondition of command c and postcondition Q. From
left-to-right, the formula above states that wlp(c ,Q) is a valid precondition: ⊨ {P} c {Q}. The
right-to-left implication says it is the weakest valid precondition: if another assertion R satisfies
⊨ {R} c {Q}, then R implies P. It can be shown that weakest liberal preconditions are unique
modulo equivalence.

We can calculate the weakest liberal precondition of a command as follows:

wlp(skip, P) � P
wlp(x :� a , P) � P[a/x]

wlp((c1; c2), P) � wlp(c1 ,wlp(c2 , P))
wlp(if b then c1 else c2 , P) � (b �⇒ wlp(c1 , P)) ∧ (¬b �⇒ wlp(c2 , P))

The definition of wlp(while b do c , P) is slightly more complicated—it encodes the weakest liberal
precondition for each iteration of the loop. To give the intuition, first define the weakest liberal
precondition for a loop that termintes in i steps as follows:

F0(P) � true
Fi+1(P) � (¬b �⇒ P) ∧ (b �⇒ wlp(c , Fi(P)))

We can then express the weakest liberal precondition using an infinitary conjunction:

wlp(while b do c , P) �
∧

i

Fi(P)

See Winskel Chapter 7 for the details of how to encode the weakest liberal precondition for a while
loop as an ordinary assertion.

To check that our definition is correct, we can prove (how?) that it yields a valid partial
correctness specification:

Lemma 1.

∀c ∈ Com,Q ∈ Assn.
⊨ {wlp(c ,Q)} c {Q} and ∀R ∈ Assn. ⊨ {R} c {Q} implies (R �⇒ wlp(c ,Q))

It is not hard to prove that it also yields a provable specification:

Lemma 2.
∀c ∈ Com,Q ∈ Assn. ⊢ {wlp(c ,Q)} c {Q}

Relative completeness follows by a simple argument:

Proof Sketch. Let c be a command and let P and Q be assertions such that the partial correctness
specification {P} c {Q} is valid. By Lemma 1 we have ⊨ P �⇒ wlp(c ,Q). By Lemma 2 we have
⊢ {wlp(c ,Q)} c {Q}. We conclude ⊢ {P} c {Q} using the Consequence rule.

2


