Announcements

- My office hours are at the normal time today
- Guest lecture by Seung Hee Han on Monday
Recursive Types

Many languages recursive data types that refer to themselves:

Java

class Tree {
 Tree leftChild, rightChild;
 int data;
}

OCaml
type tree = Leaf | Node of tree * tree * int
Recursive Types

Many languages recursive data types that refer to themselves:

Java

```java
class Tree {
    Tree leftChild, rightChild;
    int data;
}
```

OCaml

```ocaml
type tree = Leaf | Node of tree * tree * int
```
Recursive Types

Many languages recursive data types that refer to themselves:

Java

```java
public class Tree {
    Tree leftChild, rightChild;
    int data;
}
```

OCaml

```ocaml
type tree = Leaf | Node of tree * tree * int
```

\(\lambda\)-calculus?

\[
tree = \text{unit} + \text{int} \times tree \times tree
\]
Recursive Type Equations

We would like \texttt{tree} to be a solution of the equation:

\[
\alpha = \texttt{unit} + \texttt{int} \times \alpha \times \alpha
\]

However, no such solution exists with the types we have so far...
Unwinding Equations

We could *unwind* the equation:

\[\alpha = \text{unit} + \text{int} \times \alpha \times \alpha \]
We could *unwind* the equation:

\[
\alpha = \text{unit} + \text{int} \times \alpha \times \alpha \\
= \text{unit} + \text{int} \times \\
\quad (\text{unit} + \text{int} \times \alpha \times \alpha) \times \\
\quad (\text{unit} + \text{int} \times \alpha \times \alpha)
\]

If we take the limit of this process, we have an infinite tree.
We could *unwind* the equation:

\[
\alpha = \text{unit} + \text{int} \times \alpha \times \alpha \\
= \text{unit} + \text{int} \times \\
(\text{unit} + \text{int} \times \alpha \times \alpha) \times \\
(\text{unit} + \text{int} \times \alpha \times \alpha) \\
= \text{unit} + \text{int} \times \\
(\text{unit} + \text{int} \times \\
(\text{unit} + \text{int} \times \alpha \times \alpha) \times \\
(\text{unit} + \text{int} \times \alpha \times \alpha)) \times \\
(\text{unit} + \text{int} \times \\
(\text{unit} + \text{int} \times \alpha \times \alpha) \times \\
(\text{unit} + \text{int} \times \alpha \times \alpha))
\]
Unwinding Equations

We could *unwind* the equation:

\[\alpha = \text{unit} + \text{int} \times \alpha \times \alpha \]
\[= \text{unit} + \text{int} \times \\
(\text{unit} + \text{int} \times \alpha \times \alpha) \times \\
(\text{unit} + \text{int} \times \alpha \times \alpha) \]
\[= \text{unit} + \text{int} \times \\
(\text{unit} + \text{int} \times \\
(\text{unit} + \text{int} \times \alpha \times \alpha) \times \\
(\text{unit} + \text{int} \times \alpha \times \alpha)) \times \\
(\text{unit} + \text{int} \times \\
(\text{unit} + \text{int} \times \alpha \times \alpha)) \]
\[= \ldots \]

If we take the limit of this process, we have an infinite tree.
Unwinding Equations

We could *unwind* the equation:

\[
\alpha = \text{unit} + \text{int} \times \alpha \times \alpha \\
= \text{unit} + \text{int} \times \\
\quad (\text{unit} + \text{int} \times \alpha \times \alpha) \times \\
\quad (\text{unit} + \text{int} \times \alpha \times \alpha) \\
= \text{unit} + \text{int} \times \\
\quad (\text{unit} + \text{int} \times \\
\quad \quad (\text{unit} + \text{int} \times \alpha \times \alpha) \times \\
\quad \quad (\text{unit} + \text{int} \times \alpha \times \alpha)) \times \\
\quad (\text{unit} + \text{int} \times \\
\quad \quad (\text{unit} + \text{int} \times \alpha \times \alpha) \times \\
\quad \quad (\text{unit} + \text{int} \times \alpha \times \alpha)) \\
= \ldots
\]

If we take the limit of this process, we have an infinite tree.
Infinite Types

Think of this as an infinite labeled graph whose nodes are labeled with the type constructors \(\times \), \(+\), \text{int}, and \text{unit}.

This infinite tree is a solution of our equation, and this is what we take as the type \text{tree}.
We’ll specify potentially-infinite solutions to type equations using a finite syntax based on the fixed-point type constructor μ.

$$\mu \alpha. \tau$$
We’ll specify potentially-infinite solutions to type equations using a finite syntax based on the \emph{fixed-point type constructor} \(\mu \).

\[
\mu \alpha . \tau
\]

Here’s a \texttt{tree} type satisfying our original equation:

\[
\texttt{tree} \triangleq \mu \alpha . \texttt{unit} + \texttt{int} \times \alpha \times \alpha .
\]
We’ll define two treatments of recursive types. With *equirecursive types*, a recursive type is equal to its unfolding:

\[\mu \alpha. \tau \text{ is a solution to } \alpha = \tau, \text{ so:} \]

\[\mu \alpha. \tau = \tau \{ \mu \alpha. \tau / \alpha \} \]
We’ll define two treatments of recursive types. With equirecursive types, a recursive type is equal to its unfolding:

\[\mu \alpha. \tau \text{ is a solution to } \alpha = \tau, \text{ so:} \]

\[\mu \alpha. \tau = \tau \{ \mu \alpha. \tau / \alpha \} \]

Two typing rules let us switch between folded and unfolded:

\[\frac{\Gamma \vdash e : \tau \{ \mu \alpha. \tau / \alpha \} \quad \mu\text{-INTRO}}{\Gamma \vdash e : \mu \alpha. \tau} \]

\[\frac{\Gamma \vdash e : \mu \alpha. \tau \quad \mu\text{-ELIM}}{\Gamma \vdash e : \tau \{ \mu \alpha. \tau / \alpha \}} \]
Isorecursive Types

Alternatively, *isorecursive types* avoid infinite type trees.

The type $\mu \alpha. \tau$ is distinct but transformable to and from $\tau\{\mu \alpha. \tau/\alpha\}$.
Isorecursive Types

Alternatively, isorecursive types avoid infinite type trees.

The type $\mu \alpha. \tau$ is distinct but transformable to and from $\tau\{\mu \alpha. \tau / \alpha\}$.

Converting between the two uses explicit fold and unfold operations:

$$
\text{unfold}_{\mu \alpha. \tau} : \mu \alpha. \tau \rightarrow \tau\{\mu \alpha. \tau / \alpha\}
$$

$$
\text{fold}_{\mu \alpha. \tau} : \tau\{\mu \alpha. \tau / \alpha\} \rightarrow \mu \alpha. \tau
$$
Static Semantics (Isorecursive)

The typing rules introduce and eliminate μ-types:

\[
\begin{align*}
\Gamma \vdash e : \tau \{ \mu \alpha . \tau / \alpha \} \\
\hline
\Gamma \vdash \text{fold } e : \mu \alpha . \tau \\
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash e : \mu \alpha . \tau \\
\hline
\Gamma \vdash \text{unfold } e : \tau \{ \mu \alpha . \tau / \alpha \} \\
\end{align*}
\]

\[
\begin{align*}
\mu\text{-INTRO} \\
\mu\text{-ELIM}
\end{align*}
\]
Dynamic Semantics

We also need to augment the operational semantics:

\[
\text{unfold } (\text{fold } e) \rightarrow e
\]

Intuitively, to access data in a recursive type \(\mu \alpha. \tau \), we need to **unfold** it first. And the only way that values of type \(\mu \alpha. \tau \) could have been created is via **fold**.
Example

Here’s a recursive type for lists of numbers:

\[\text{intlist} \triangleq \mu \alpha. \text{unit} + \text{int} \times \alpha. \]
Here’s a recursive type for lists of numbers:

\[\text{intlist} \triangleq \mu \alpha. \text{unit} + \text{int} \times \alpha. \]

Here’s how to add up the elements of an \texttt{intlist}:

\[
\begin{align*}
\text{let sum } &= \text{fix } (\lambda f : \text{intlist} \rightarrow \text{intlist}) \\
& \quad \lambda l : \text{intlist}. \text{case unfold } l \text{ of} \\
& \quad \quad (\lambda u : \text{unit}. 0) \\
& \quad \quad | (\lambda p : \text{int} \times \text{intlist}. (#1 p) + f (#2 p)))
\end{align*}
\]
Encoding Numbers

Recursive types let us encode the natural numbers!
Recursive types let us encode the natural numbers!

A natural number is either 0 or the successor of a natural number:

\[
\text{nat} \eqdef \mu \alpha. \text{unit} + \alpha
\]
Encoding Numbers

Recursive types let us encode the natural numbers!

A natural number is either 0 or the successor of a natural number:

$$\text{nat} \triangleq \mu \alpha. \text{unit} + \alpha$$

$$0 \triangleq \text{fold}(\text{inl}_{\text{unit} + \text{nat}}())$$
Encoding Numbers

Recursive types let us encode the natural numbers!

A natural number is either 0 or the successor of a natural number:

\[
\text{nat} \triangleq \mu \alpha. \text{unit} + \alpha
\]

\[
0 \triangleq \text{fold} (\text{inl}_{\text{unit}+\text{nat}} ())
\]

\[
1 \triangleq \text{fold} (\text{inr}_{\text{unit}+\text{nat}} 0)
\]

\[
2 \triangleq \text{fold} (\text{inr}_{\text{unit}+\text{nat}} 1),
\]

\vdots
Recursive types let us encode the natural numbers!

A natural number is either 0 or the successor of a natural number:

\[
\text{nat} \triangleq \mu \alpha. \text{unit} + \alpha
\]

0 \triangleq \text{fold} (\text{inl}_{\text{unit} + \text{nat}} ())

1 \triangleq \text{fold} (\text{inr}_{\text{unit} + \text{nat}} 0)

2 \triangleq \text{fold} (\text{inr}_{\text{unit} + \text{nat}} 1),

\vdots

The successor function has type \text{nat} \rightarrow \text{nat}:

\[
(\lambda x : \text{nat}. \text{fold} (\text{inr}_{\text{unit} + \text{nat}} x))
\]
Self-Application and Ω

Recall Ω defined as:

$$\omega \triangleq \lambda x. x x \quad \Omega \triangleq \omega \omega.$$

Ω was impossible to type... until now!
Self-Application and Ω

Recall Ω defined as:

$$\omega \triangleq \lambda x. x \ x \quad \quad \Omega \triangleq \omega \ \omega.$$

Ω was impossible to type... until now!

x is a function. Let’s say it has the type $\sigma \rightarrow \tau$.
Self-Application and Ω

Recall Ω defined as:

$$\omega \triangleq \lambda x. x \ x \quad \Omega \triangleq \omega \ \omega.$$

Ω was impossible to type... until now!

x is a function. Let’s say it has the type $\sigma \rightarrow \tau$.

x is used as the argument to this function, so it must have type σ.
Self-Application and Ω

Recall Ω defined as:

$$\omega \triangleq \lambda x. x \ x \quad \quad \Omega \triangleq \omega \ \omega.$$

Ω was impossible to type... until now!

x is a function. Let’s say it has the type $\sigma \rightarrow \tau$.

x is used as the argument to this function, so it must have type σ.

So let’s write a type equation:

$$\sigma = \sigma \rightarrow \tau$$
Self-Application and Ω

Putting these pieces together, the fully typed ω term is:

$$\omega \triangleq \lambda x : \mu \alpha. (\alpha \rightarrow \tau). (\text{unfold } x) \ x$$
Self-Application and Ω

Putting these pieces together, the fully typed ω term is:

$$\omega \triangleq \lambda x : \mu \alpha. (\alpha \to \tau). (\text{unfold } x) x$$

The type of ω is $(\mu \alpha. (\alpha \to \tau)) \to \tau$.

So the type of $\text{fold } \omega$ is $\mu \alpha. (\alpha \to \tau)$.
Putting these pieces together, the fully typed ω term is:

$$\omega \triangleq \lambda x : \mu \alpha. (\alpha \rightarrow \tau). (\text{unfold } x) \; x$$

The type of ω is $(\mu \alpha. (\alpha \rightarrow \tau)) \rightarrow \tau$.

So the type of $\text{fold } \omega$ is $\mu \alpha. (\alpha \rightarrow \tau)$.

Now we can define $\Omega = \omega \; (\text{fold } \omega)$. It has type τ.
Self-Application and Ω

We can even write ω in OCaml:

```ocaml
# type u = Fold of (u -> u);;
val type u = Fold of (u -> u) : type annotation
# let omega = fun x -> match x with Fold f -> f x;;
val omega : u -> u = <fun>
# omega (Fold omega);;
...runs forever until you hit control-c
```
With recursive types, we can type everything in the untyped lambda calculus!
Encoding \(\lambda \)-Calculus

With recursive types, we can type everything in the untyped lambda calculus!

Every \(\lambda \)-term can be applied as a function to any other \(\lambda \)-term. So let’s define an “untyped” type:

\[
U \triangleq \mu \alpha. \alpha \rightarrow \alpha
\]
Encoding \(\lambda \)-Calculus

With recursive types, we can type everything in the untyped lambda calculus!

Every \(\lambda \)-term can be applied as a function to any other \(\lambda \)-term. So let’s define an “untyped” type:

\[
U \triangleq \mu \alpha. \alpha \to \alpha
\]

The full translation is:

\[
\begin{align*}
\llbracket x \rrbracket & \triangleq x \\
\llbracket e_0 e_1 \rrbracket & \triangleq (\text{unfold} \llbracket e_0 \rrbracket) \llbracket e_1 \rrbracket \\
\llbracket \lambda x. e \rrbracket & \triangleq \text{fold} \lambda x : U. \llbracket e \rrbracket
\end{align*}
\]

Every untyped term maps to a term of type \(U \).