Because continuations expose control explicitly, they make a good intermediate language for compilation—control is exposed explicitly in machine code as well. We can show this by writing a translation from a full-featured functional language down to an assembly-like language. This translation will give us a fairly complete recipe for compiling any of the language features we have discussed over the past few lectures all the way down to hardware.

1 Source language

Our source language looks like the lambda calculus with tuples and numbers. We assume the standard call-by-value semantics.

\[e ::= x | \lambda x. e | e_1 e_2 | (e_1, e_2) | \#i e | n | e_1 + e_2 \]

The target language looks like a simple assembly language:

\[p ::= bb_1; bb_2; \ldots; bb_n \]
\[bb ::= lb ; c_1 ; c_2 ; \ldots; c_n ; \text{jump } x \]
\[c ::= \text{mov } x_1, x_2 \]
\[| \text{mov } x, n \]
\[| \text{mov } x, lb \]
\[| \text{add } x_1, x_2, x_3 \]
\[| \text{load } x_1, x_2[n] \]
\[| \text{store } x_1, x_2[n] \]
\[| \text{malloc } n \]

A program \(p \) consists of a series of basic blocks \(bb \), each with a distinct label \(lb \). Each basic block contains a sequence of commands \(c \) and ends with a jump instruction. Commands correspond to assembly language instructions and are largely self-evident; the only one that is high-level is the malloc instruction, which allocates \(n \) words of space and places the address of the space into a special register \(r_0 \). (This can be implemented as simply as \text{add } r_0, r_0, -n \) if we are not worried about garbage.)

The jump instruction is an indirect jump. It makes the program counter take the value of the argument register: essentially, \text{jump } x \) acts like \text{mov } pc, x. \)

2 Intermediate language #1

The first intermediate language, IL1, is in continuation-passing style:
There are a few things to note about the intermediate language:

- Lambda abstractions corresponding to continuations are marked with a underline. These are considered *administrative lambdas* that we will eliminate at compile time, either by reducing them or by converting them to real lambdas.
- There are no subexpressions in the language (e does not occur in its own definition).
- Commands c look like basic blocks:

 let \(x_1 = e_1 \) in \\
 let \(x_2 = e_2 \) in \\
 ... \\
 let \(x_n = e_n \) in \\
 \(v_0 \ v_1 \ v_2 \)

- Lambdas are not closed and can occur inside other lambdas.

The contract of the translation is that \([e]k\) will evaluate \(e\) and pass its result to the continuation \(k\). To translate an entire program, we use \(k = \text{halt}\), where \(\text{halt}\) is the continuation to send the result of the entire program to. Here is the translation from the source to the first intermediate language:

\[
\begin{align*}
[v] & \quad k = k x \\
[n] & \quad k = k n \\
[(e_1 + e_2)] & \quad k = [e_1](\lambda x_1. [e_2](\lambda x_2. \text{let } z = x_1 + x_2 \text{ in } k z)) \\
[(e_1, e_2)] & \quad k = [e_1](\lambda x_1. [e_2](\lambda x_2. \text{let } t = (x_1, x_2) \text{ in } k t)) \\
[#i \ e] & \quad k = [e](\Delta t. \text{let } y = #i t \text{ in } k y) \\
[\lambda x. e] & \quad k = k (\lambda x. \lambda k'. [e] k') \\
[e_1 \ e_2] & \quad k = [e_1](\lambda f. [e_2](\Delta v. f v k))
\end{align*}
\]
Let’s see an example. We translate the expression \([(\lambda a. #1 a) (3, 4)] k \), using \(k = \text{halt} \).

\[
\begin{align*}
[(\lambda a. #1 a) (3, 4)] k &= [\lambda a. #1 a] (\lambda v. f v k) \\
&= (\lambda f. [(3, 4)](\lambda v. f v k)) (\lambda a. k') \\
&= (\lambda f. [(3, 4)](\lambda v. f v k)) (\lambda a. \lambda k'. [#1 a] k') \\
&= (\lambda f. [3](\lambda x_1. [4](\lambda x_2. \text{let } b = (x_1, x_2) \text{ in } (\lambda v. f v k) b)) (\lambda a. \lambda k'. [#1 a] k') \\
&= (\lambda f. (\lambda x_1. (\lambda x_2. \text{let } b = (x_1, x_2) \text{ in } (\lambda v. f v k) b) 4) 3) (\lambda a. \lambda k'. [#1 a] k') \\
&= (\lambda f. (\lambda x_1. (\lambda x_2. \text{let } b = (x_1, x_2) \text{ in } (\lambda v. f v k) b) 4) 3) (\lambda a. \lambda k'. [a](\lambda t. \text{let } y = #1 t \text{ in } k') \\
&= (\lambda x. e) y \rightarrow e[y/x]
\end{align*}
\]

Other unnecessary administrative lambdas can be converted into lets:

\[(\lambda x. e)v \rightarrow \text{let } x = v \text{ in } e\]

We can also perform administrative \(\eta \)-reductions:

\[\lambda x. k x \rightarrow k\]

If we apply these rules to the expression above, we get

\[
\begin{align*}
\text{let } f &= \lambda a. \lambda k'. \text{let } y = #1 a \text{ in } k' y \text{ in } \\
\text{let } x_1 &= 3 \text{ in } \\
\text{let } x_2 &= 4 \text{ in } \\
\text{let } b &= (x_1, x_2) \text{ in } \\
f b k
\end{align*}
\]

This is starting to look a lot more like our target language.

The idea of separating administrative terms from real terms and performing a compile-time simplification—often known as partial evaluation—is powerful and can be used in many other contexts. Here, it allows us to write a very simple CPS conversion that treats all continuations uniformly, and perform a number of control optimizations. Note that we may not be able to remove all administrative lambdas. Any that cannot be eliminated using the rules above are converted into real lambdas.

3 Intermediate Language #1 \(\rightarrow\) Intermediate Language #2

The next step is the translation from IL1 to IL2. In this intermediate language, all lambdas are at the top level, with no nesting:
\[P ::= \begin{align*}
 & \text{let } x_f = \lambda x_1 \ldots \lambda x_n. \lambda c . c \text{ in } P \\
 & \text{let } x_c = \lambda x_1 \ldots \lambda x_n. c \text{ in } P \\
 & c \\
 e ::= \text{let } x = e \text{ in } c | x_1 x_2 \ldots x_n \\
\end{align*} \]

The key idea behind the translation from IL1 to IL2 is to “lift” all lambdas up to the top level while preserving lexical scope. More specifically, this translation requires the construction of closures that capture the free variables of the lambda abstractions. This translation is known as closure conversion.

The main part of the translation is captured by the following:

\[
[\lambda x. \lambda k. c] \sigma = \begin{cases}
 \text{let } (c', \sigma') = [c] \sigma \text{ in } \\
 \text{let } y_1, \ldots, y_n = \text{fus}(\lambda x. \lambda k. c') \text{ in } \\
 (f y_1 \ldots y_n, \sigma'[\sigma \mapsto \lambda y_1 \ldots \lambda y_n. \lambda x. \lambda k. c']) \text{ where } f \text{ fresh }
\end{cases}
\]

The translation takes an expression possibly containing nested lambdas and an environment \(\sigma \) mapping variables to lambdas. It produces a lambda-free expression and an extended environment. Intuitively, the environment collects up the functions that must be lifted to the top level of the program. The translation of \(\lambda x. \lambda k. c \) in the definition above first translates the body \(c \), then creates a new function \(f \) parameterized on \(x \) as well as the free variables \(y_1 \) to \(y_n \) of the translated body. It then adds \(f \) to the environment \(\sigma \) replaces the entire lambda with \((f y_n \ldots y_n) \). Overall, this has the effect of eliminating all nested lambdas.

4 Intermediate Language #2 → Assembly

The final translation from IL2 to assembly is given in Figure 1. Note that \(ra \) is the name of the dedicated register that holds the return address. In addition, we assume an infinite supply of registers. We need to do register allocation and possibly spill registers to a stack to obtain working code.

Finally, note that while this translation is very simple, it is not particularly efficient. For example, we are doing a lot of register moves when calling functions and when starting the function body, which could be optimized.
\[\mathcal{P}[c] = \text{main : } C[c]; \]
\[\text{halt :} \]
\[\mathcal{P}[\text{let } x_f = \ldots \lambda x_n. \lambda k. c \text{ in } p] = x_f : \text{mov } x_1, a_1; \]
\[\quad \vdots \]
\[\quad \text{mov } x_n, a_n; \]
\[\quad \text{mov } k, ra; \]
\[\quad C[c]; \]
\[\quad \mathcal{P}[p] \]
\[\mathcal{P}[\text{let } x_c = \ldots \lambda x_n. c \text{ in } p] = x_c : \text{mov } x_1, a_1; \]
\[\quad \vdots \]
\[\quad \text{mov } x_n, a_n; \]
\[\quad C[c]; \]
\[\quad \mathcal{P}[p] \]
\[C[\text{let } x = n \text{ in } c] = \text{mov } x, n; C[c] \]
\[C[\text{let } x_1 = x_2 \text{ in } c] = \text{mov } x_1, x_2; C[c] \]
\[C[\text{let } x = x_1 + x_2 \text{ in } c] = \text{add } x_1, x_2, x; \]
\[C[c] \]
\[C[\text{let } x = (x_1, x_2) \text{ in } c] = \text{malloc } 2; \]
\[\quad \text{mov } x, r_0; \]
\[\quad \text{store } x_1, x[0]; \]
\[\quad \text{store } x_2, x[1]; \]
\[C[c] \]
\[C[\text{let } x = \#i x_1 \text{ in } c] = \text{load } x, x[1]; \]
\[C[c] \]
\[C[x \ k \ x_1 \ldots \ x_n] = \text{mov } a_1, x_1; \]
\[\quad \vdots \]
\[\quad \text{mov } a_n, x_n; \]
\[\quad \text{mov } ra, k; \]
\[\quad \text{jump } x \]

Figure 1: Compilation to assembly.