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Announcements

• Foster Office Hours 11am-12pm today
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π-calculus Syntax

x, y, z ∈ N Names

π ::= τ | x⟨y⟩ | x(y) | [x = y]π Prefixes

M,N ::= 0 | π.P | M+M Summations

P,Q, R ::= M | P1 | P2 | νx. P | !P Processes
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Reaction

τ.P+M → P
R-Tau

(x⟨y⟩.P1 +M1) | (x(z).P2 +M2) → P1 | P2{y/z}
R-React

P1 → P′1
P1 | P2 → P′1 | P2

R-Par

P → P′

νx. P → νx. P′
R-Res

P ≡ P′ P′ → Q′ Q′ ≡ Q

P → Q
R-Struct
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Example: Encoding Booleans

Idea: encode a boolean value b as a process that receives two
channels t and f on the channel l where the boolean is “located”
and then signals on the corresponding channel

True(l) ≜ l(t, f).̄t

False(l) ≜ l(t, f).̄f
Cond(P,Q)(l) ≜ νt, f. (̄l⟨t, f⟩.(t.P+ f.Q))
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Example: Encoding Naturals

Idea: encode a natural number value n as a process that receives
two channels s and z on the channel c where the number is
“located” and then signals on s n times terminated by z

Zero(c) ≜ c(s, z).̄z
Succ(n)(c) ≜ c(s, z).n̄⟨s, z⟩. s̄
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Encoding Lists

Idea: encode a list l as a process that receives two channels c and n
on the channel l where the list is “located” and then signals on c
with each value of the list, terminated by n

Nil(l) ≜ l(n, c).n̄
Cons(H, T)(l) ≜ νh, t. (l(n, c).c̄⟨h, t⟩ | H⟨h⟩ | T⟨t⟩)

IsNil(L)(r) ≜ ν l, n, c. (L⟨l⟩ | l̄⟨n, c⟩.(n.True⟨r⟩+ c(h, t).False⟨r⟩))
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Pattern Matching

We can encode pattern matching on lists

case l of
Nil? ⇒ P
Cons?(h, t) ⇒ Q

Idea: send fresh channels n and c to l and test which it signals on:

νn, c. l̄⟨n, c⟩ n.P+ c(h, t).Q

8



Pattern Matching

We can encode pattern matching on lists

case l of
Nil? ⇒ P
Cons?(h, t) ⇒ Q

Idea: send fresh channels n and c to l and test which it signals on:

νn, c. l̄⟨n, c⟩ n.P+ c(h, t).Q

8



Pattern Matching

We can encode pattern matching on lists

case l of
Nil? ⇒ P
Cons?(h, t) ⇒ Q

Idea: send fresh channels n and c to l and test which it signals on:

νn, c. l̄⟨n, c⟩ n.P+ c(h, t).Q

8



Destructive Operations

Copy⟨l,m⟩ ≜ case l of
Nil? ⇒ Nil⟨m⟩
Cons?(h, t) ⇒ νt′. (m(n, c).c̄⟨h, t′⟩ | Copy⟨t, t′⟩)

Join⟨k, l,m⟩ ≜ case k of
Nil? ⇒ Copy⟨l,m⟩
Cons?(h, t) ⇒ νt′. (m(n, c).c̄⟨h, t′⟩ | Join⟨t, l, t′⟩)
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Encoding Persistent Datatypes

We can put a ! in front of processes to turn them into servers create
arbitrary numbers of the original process

Nil(l) ≜ !l(n, c).n̄
Cons(H, T)(l) ≜ νh, t. (!l(n, c).c̄⟨h, t⟩ | H⟨h⟩ | T⟨t⟩)

This causes the list to still exist after sending or receiving a message
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Encoding λ-calculus

[[x]](u) ≜ x̄⟨u⟩
[[λx. e]](u) ≜ u(x, y).[[e]](y)
[[e1 e2]](u) ≜ νy. ([[e1]](y) | νx. (ȳ⟨x, u⟩ | !x(w).[[e2]](w)))
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Bisimulation

When are two processes equal?

Perhaps the most important contributions of research on π
calculus has been the development of the notion of bisimulation

P

Q

R S

a

b c

P’

Q’ Q”

R’ S’

a a

b c
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Mathematical Preliminaries &
Operational Semantics

Denotational & Axiomatic Semantics

λ-calculus

Preliminary Exam I

Fall Break

Type Systems &
Program Analyses

Preliminary Exam II

Advanced Topics

Final Exam
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Final Topics

• Mathematical Preliminaries (inductive definitions)

• Semantics (operational, axiomatic, denotational)

• λ-calculus (basics, encodings, extensions)

• Type systems (simple, extensions, properties)

• Advanced topics (TAL, concurrency)

Expect to solve probems just like the ones we’ve seen throughout
the course...

...and to apply the skills you’ve acquired to new problems too!
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Final Logistics

• Date: Friday, December 12th

• Time: 9-11:30am

• Where: Gates G01

• Practice: Available today

• Review: Next week?
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Going further

• CS 6110 – Advanced Programming Languages

• CS 611X – Certified Software Systems

• CS 7190 – Seminar in Programming Languages

• CS 4999 – Independent Research

Thank you, and stay in touch!
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