

CS 4110

Programming Languages & Logics

Lecture 37
Concurrency and Victory Lap

5 December 2014

Announcements

• Foster Office Hours 11am-12pm today

2

π-calculus Syntax

x, y, z ∈ N Names

π ::= τ | x⟨y⟩ | x(y) | [x = y]π Prefixes

M,N ::= 0 | π.P | M+M Summations

P,Q, R ::= M | P1 | P2 | νx. P | !P Processes

3

π-calculus Syntax

x, y, z ∈ N Names

π ::= τ | x⟨y⟩ | x(y) | [x = y]π Prefixes

M,N ::= 0 | π.P | M+M Summations

P,Q, R ::= M | P1 | P2 | νx. P | !P Processes

3

π-calculus Syntax

x, y, z ∈ N Names

π ::= τ | x⟨y⟩ | x(y) | [x = y]π Prefixes

M,N ::= 0 | π.P | M+M Summations

P,Q, R ::= M | P1 | P2 | νx. P | !P Processes

3

π-calculus Syntax

x, y, z ∈ N Names

π ::= τ | x⟨y⟩ | x(y) | [x = y]π Prefixes

M,N ::= 0 | π.P | M+M Summations

P,Q, R ::= M | P1 | P2 | νx. P | !P Processes

3

π-calculus Syntax

x, y, z ∈ N Names

π ::= τ | x⟨y⟩ | x(y) | [x = y]π Prefixes

M,N ::= 0 | π.P | M+M Summations

P,Q, R ::= M | P1 | P2 | νx. P | !P Processes

3

π-calculus Syntax

x, y, z ∈ N Names

π ::= τ | x⟨y⟩ | x(y) | [x = y]π Prefixes

M,N ::= 0 | π.P | M+M Summations

P,Q, R ::= M | P1 | P2 | νx. P | !P Processes

3

Reaction

τ.P+M → P
R-Tau

(x⟨y⟩.P1 +M1) | (x(z).P2 +M2) → P1 | P2{y/z}
R-React

P1 → P′1
P1 | P2 → P′1 | P2

R-Par

P → P′

νx. P → νx. P′
R-Res

P ≡ P′ P′ → Q′ Q′ ≡ Q

P → Q
R-Struct

4

Reaction

τ.P+M → P
R-Tau

(x⟨y⟩.P1 +M1) | (x(z).P2 +M2) → P1 | P2{y/z}
R-React

P1 → P′1
P1 | P2 → P′1 | P2

R-Par

P → P′

νx. P → νx. P′
R-Res

P ≡ P′ P′ → Q′ Q′ ≡ Q

P → Q
R-Struct

4

Reaction

τ.P+M → P
R-Tau

(x⟨y⟩.P1 +M1) | (x(z).P2 +M2) → P1 | P2{y/z}
R-React

P1 → P′1
P1 | P2 → P′1 | P2

R-Par

P → P′

νx. P → νx. P′
R-Res

P ≡ P′ P′ → Q′ Q′ ≡ Q

P → Q
R-Struct

4

Reaction

τ.P+M → P
R-Tau

(x⟨y⟩.P1 +M1) | (x(z).P2 +M2) → P1 | P2{y/z}
R-React

P1 → P′1
P1 | P2 → P′1 | P2

R-Par

P → P′

νx. P → νx. P′
R-Res

P ≡ P′ P′ → Q′ Q′ ≡ Q

P → Q
R-Struct

4

Reaction

τ.P+M → P
R-Tau

(x⟨y⟩.P1 +M1) | (x(z).P2 +M2) → P1 | P2{y/z}
R-React

P1 → P′1
P1 | P2 → P′1 | P2

R-Par

P → P′

νx. P → νx. P′
R-Res

P ≡ P′ P′ → Q′ Q′ ≡ Q

P → Q
R-Struct

4

Example: Encoding Booleans

Idea: encode a boolean value b as a process that receives two
channels t and f on the channel l where the boolean is “located”
and then signals on the corresponding channel

True(l) ≜ l(t, f).̄t

False(l) ≜ l(t, f).̄f
Cond(P,Q)(l) ≜ νt, f. (̄l⟨t, f⟩.(t.P+ f.Q))

5

Example: Encoding Booleans

Idea: encode a boolean value b as a process that receives two
channels t and f on the channel l where the boolean is “located”
and then signals on the corresponding channel

True(l) ≜ l(t, f).̄t
False(l) ≜ l(t, f).̄f

Cond(P,Q)(l) ≜ νt, f. (̄l⟨t, f⟩.(t.P+ f.Q))

5

Example: Encoding Booleans

Idea: encode a boolean value b as a process that receives two
channels t and f on the channel l where the boolean is “located”
and then signals on the corresponding channel

True(l) ≜ l(t, f).̄t
False(l) ≜ l(t, f).̄f

Cond(P,Q)(l) ≜ νt, f. (̄l⟨t, f⟩.(t.P+ f.Q))

5

Example: Encoding Naturals

Idea: encode a natural number value n as a process that receives
two channels s and z on the channel c where the number is
“located” and then signals on s n times terminated by z

Zero(c) ≜ c(s, z).̄z
Succ(n)(c) ≜ c(s, z).n̄⟨s, z⟩. s̄

6

Example: Encoding Naturals

Idea: encode a natural number value n as a process that receives
two channels s and z on the channel c where the number is
“located” and then signals on s n times terminated by z

Zero(c) ≜ c(s, z).̄z

Succ(n)(c) ≜ c(s, z).n̄⟨s, z⟩. s̄

6

Example: Encoding Naturals

Idea: encode a natural number value n as a process that receives
two channels s and z on the channel c where the number is
“located” and then signals on s n times terminated by z

Zero(c) ≜ c(s, z).̄z
Succ(n)(c) ≜ c(s, z).n̄⟨s, z⟩. s̄

6

Encoding Lists

Idea: encode a list l as a process that receives two channels c and n
on the channel l where the list is “located” and then signals on c
with each value of the list, terminated by n

Nil(l) ≜ l(n, c).n̄
Cons(H, T)(l) ≜ νh, t. (l(n, c).c̄⟨h, t⟩ | H⟨h⟩ | T⟨t⟩)

IsNil(L)(r) ≜ ν l, n, c. (L⟨l⟩ | l̄⟨n, c⟩.(n.True⟨r⟩+ c(h, t).False⟨r⟩))

7

Encoding Lists

Idea: encode a list l as a process that receives two channels c and n
on the channel l where the list is “located” and then signals on c
with each value of the list, terminated by n

Nil(l) ≜ l(n, c).n̄

Cons(H, T)(l) ≜ νh, t. (l(n, c).c̄⟨h, t⟩ | H⟨h⟩ | T⟨t⟩)
IsNil(L)(r) ≜ ν l, n, c. (L⟨l⟩ | l̄⟨n, c⟩.(n.True⟨r⟩+ c(h, t).False⟨r⟩))

7

Encoding Lists

Idea: encode a list l as a process that receives two channels c and n
on the channel l where the list is “located” and then signals on c
with each value of the list, terminated by n

Nil(l) ≜ l(n, c).n̄
Cons(H, T)(l) ≜ νh, t. (l(n, c).c̄⟨h, t⟩ | H⟨h⟩ | T⟨t⟩)

IsNil(L)(r) ≜ ν l, n, c. (L⟨l⟩ | l̄⟨n, c⟩.(n.True⟨r⟩+ c(h, t).False⟨r⟩))

7

Encoding Lists

Idea: encode a list l as a process that receives two channels c and n
on the channel l where the list is “located” and then signals on c
with each value of the list, terminated by n

Nil(l) ≜ l(n, c).n̄
Cons(H, T)(l) ≜ νh, t. (l(n, c).c̄⟨h, t⟩ | H⟨h⟩ | T⟨t⟩)

IsNil(L)(r) ≜ ν l, n, c. (L⟨l⟩ | l̄⟨n, c⟩.(n.True⟨r⟩+ c(h, t).False⟨r⟩))

7

Pattern Matching

We can encode pattern matching on lists

case l of
Nil? ⇒ P
Cons?(h, t) ⇒ Q

Idea: send fresh channels n and c to l and test which it signals on:

νn, c. l̄⟨n, c⟩ n.P+ c(h, t).Q

8

Pattern Matching

We can encode pattern matching on lists

case l of
Nil? ⇒ P
Cons?(h, t) ⇒ Q

Idea: send fresh channels n and c to l and test which it signals on:

νn, c. l̄⟨n, c⟩ n.P+ c(h, t).Q

8

Pattern Matching

We can encode pattern matching on lists

case l of
Nil? ⇒ P
Cons?(h, t) ⇒ Q

Idea: send fresh channels n and c to l and test which it signals on:

νn, c. l̄⟨n, c⟩ n.P+ c(h, t).Q

8

Destructive Operations

Copy⟨l,m⟩ ≜ case l of
Nil? ⇒ Nil⟨m⟩
Cons?(h, t) ⇒ νt′. (m(n, c).c̄⟨h, t′⟩ | Copy⟨t, t′⟩)

Join⟨k, l,m⟩ ≜ case k of
Nil? ⇒ Copy⟨l,m⟩
Cons?(h, t) ⇒ νt′. (m(n, c).c̄⟨h, t′⟩ | Join⟨t, l, t′⟩)

9

Destructive Operations

Copy⟨l,m⟩ ≜ case l of
Nil? ⇒ Nil⟨m⟩
Cons?(h, t) ⇒ νt′. (m(n, c).c̄⟨h, t′⟩ | Copy⟨t, t′⟩)

Join⟨k, l,m⟩ ≜ case k of
Nil? ⇒ Copy⟨l,m⟩
Cons?(h, t) ⇒ νt′. (m(n, c).c̄⟨h, t′⟩ | Join⟨t, l, t′⟩)

9

Encoding Persistent Datatypes

We can put a ! in front of processes to turn them into servers create
arbitrary numbers of the original process

Nil(l) ≜ !l(n, c).n̄
Cons(H, T)(l) ≜ νh, t. (!l(n, c).c̄⟨h, t⟩ | H⟨h⟩ | T⟨t⟩)

This causes the list to still exist after sending or receiving a message

10

Encoding λ-calculus

[[x]](u) ≜ x̄⟨u⟩
[[λx. e]](u) ≜ u(x, y).[[e]](y)
[[e1 e2]](u) ≜ νy. ([[e1]](y) | νx. (ȳ⟨x, u⟩ | !x(w).[[e2]](w)))

11

Bisimulation

When are two processes equal?

Perhaps the most important contributions of research on π
calculus has been the development of the notion of bisimulation

P

Q

R S

a

b c

P’

Q’ Q”

R’ S’

a a

b c

12

Bisimulation

When are two processes equal?

Perhaps the most important contributions of research on π
calculus has been the development of the notion of bisimulation

P

Q

R S

a

b c

P’

Q’ Q”

R’ S’

a a

b c

12

Mathematical Preliminaries &
Operational Semantics

Denotational & Axiomatic Semantics

λ-calculus

Preliminary Exam I

Fall Break

Type Systems &
Program Analyses

Preliminary Exam II

Advanced Topics

Final Exam

13

Mathematical Preliminaries &
Operational Semantics

Denotational & Axiomatic Semantics

λ-calculus

Preliminary Exam I

Fall Break

Type Systems &
Program Analyses

Preliminary Exam II

Advanced Topics

Final Exam

13

Mathematical Preliminaries &
Operational Semantics

Denotational & Axiomatic Semantics

λ-calculus

Preliminary Exam I

Fall Break

Type Systems &
Program Analyses

Preliminary Exam II

Advanced Topics

Final Exam

13

Mathematical Preliminaries &
Operational Semantics

Denotational & Axiomatic Semantics

λ-calculus

Preliminary Exam I

Fall Break

Type Systems &
Program Analyses

Preliminary Exam II

Advanced Topics

Final Exam

13

Mathematical Preliminaries &
Operational Semantics

Denotational & Axiomatic Semantics

λ-calculus

Preliminary Exam I

Fall Break

Type Systems &
Program Analyses

Preliminary Exam II

Advanced Topics

Final Exam

13

Mathematical Preliminaries &
Operational Semantics

Denotational & Axiomatic Semantics

λ-calculus

Preliminary Exam I

Fall Break

Type Systems &
Program Analyses

Preliminary Exam II

Advanced Topics

Final Exam

13

Mathematical Preliminaries &
Operational Semantics

Denotational & Axiomatic Semantics

λ-calculus

Preliminary Exam I

Fall Break

Type Systems &
Program Analyses

Preliminary Exam II

Advanced Topics

Final Exam

13

Mathematical Preliminaries &
Operational Semantics

Denotational & Axiomatic Semantics

λ-calculus

Preliminary Exam I

Fall Break

Type Systems &
Program Analyses

Preliminary Exam II

Advanced Topics

Final Exam

13

Mathematical Preliminaries &
Operational Semantics

Denotational & Axiomatic Semantics

λ-calculus

Preliminary Exam I

Fall Break

Type Systems &
Program Analyses

Preliminary Exam II

Advanced Topics

Final Exam

13

Mathematical Preliminaries &
Operational Semantics

Denotational & Axiomatic Semantics

λ-calculus

Preliminary Exam I

Fall Break

Type Systems &
Program Analyses

Preliminary Exam II

Advanced Topics

Final Exam

13

Mathematical Preliminaries &
Operational Semantics

Denotational & Axiomatic Semantics

λ-calculus

Preliminary Exam I

Fall Break

Type Systems &
Program Analyses

Preliminary Exam II

Advanced Topics

Final Exam

13

Final Topics

• Mathematical Preliminaries (inductive definitions)

• Semantics (operational, axiomatic, denotational)

• λ-calculus (basics, encodings, extensions)

• Type systems (simple, extensions, properties)

• Advanced topics (TAL, concurrency)

Expect to solve probems just like the ones we’ve seen throughout
the course...

...and to apply the skills you’ve acquired to new problems too!

14

Final Topics

• Mathematical Preliminaries (inductive definitions)

• Semantics (operational, axiomatic, denotational)

• λ-calculus (basics, encodings, extensions)

• Type systems (simple, extensions, properties)

• Advanced topics (TAL, concurrency)

Expect to solve probems just like the ones we’ve seen throughout
the course...

...and to apply the skills you’ve acquired to new problems too!

14

Final Topics

• Mathematical Preliminaries (inductive definitions)

• Semantics (operational, axiomatic, denotational)

• λ-calculus (basics, encodings, extensions)

• Type systems (simple, extensions, properties)

• Advanced topics (TAL, concurrency)

Expect to solve probems just like the ones we’ve seen throughout
the course...

...and to apply the skills you’ve acquired to new problems too!

14

Final Topics

• Mathematical Preliminaries (inductive definitions)

• Semantics (operational, axiomatic, denotational)

• λ-calculus (basics, encodings, extensions)

• Type systems (simple, extensions, properties)

• Advanced topics (TAL, concurrency)

Expect to solve probems just like the ones we’ve seen throughout
the course...

...and to apply the skills you’ve acquired to new problems too!

14

Final Topics

• Mathematical Preliminaries (inductive definitions)

• Semantics (operational, axiomatic, denotational)

• λ-calculus (basics, encodings, extensions)

• Type systems (simple, extensions, properties)

• Advanced topics (TAL, concurrency)

Expect to solve probems just like the ones we’ve seen throughout
the course...

...and to apply the skills you’ve acquired to new problems too!

14

Final Topics

• Mathematical Preliminaries (inductive definitions)

• Semantics (operational, axiomatic, denotational)

• λ-calculus (basics, encodings, extensions)

• Type systems (simple, extensions, properties)

• Advanced topics (TAL, concurrency)

Expect to solve probems just like the ones we’ve seen throughout
the course...

...and to apply the skills you’ve acquired to new problems too!

14

Final Topics

• Mathematical Preliminaries (inductive definitions)

• Semantics (operational, axiomatic, denotational)

• λ-calculus (basics, encodings, extensions)

• Type systems (simple, extensions, properties)

• Advanced topics (TAL, concurrency)

Expect to solve probems just like the ones we’ve seen throughout
the course...

...and to apply the skills you’ve acquired to new problems too!

14

Final Logistics

• Date: Friday, December 12th

• Time: 9-11:30am

• Where: Gates G01

• Practice: Available today

• Review: Next week?

15

Going further

• CS 6110 – Advanced Programming Languages

• CS 611X – Certified Software Systems

• CS 7190 – Seminar in Programming Languages

• CS 4999 – Independent Research

Thank you, and stay in touch!

16

Going further

• CS 6110 – Advanced Programming Languages

• CS 611X – Certified Software Systems

• CS 7190 – Seminar in Programming Languages

• CS 4999 – Independent Research

Thank you, and stay in touch!

16

Going further

• CS 6110 – Advanced Programming Languages

• CS 611X – Certified Software Systems

• CS 7190 – Seminar in Programming Languages

• CS 4999 – Independent Research

Thank you, and stay in touch!

16

Going further

• CS 6110 – Advanced Programming Languages

• CS 611X – Certified Software Systems

• CS 7190 – Seminar in Programming Languages

• CS 4999 – Independent Research

Thank you, and stay in touch!

16

Going further

• CS 6110 – Advanced Programming Languages

• CS 611X – Certified Software Systems

• CS 7190 – Seminar in Programming Languages

• CS 4999 – Independent Research

Thank you, and stay in touch!

16

Going further

• CS 6110 – Advanced Programming Languages

• CS 611X – Certified Software Systems

• CS 7190 – Seminar in Programming Languages

• CS 4999 – Independent Research

Thank you, and stay in touch!

16

	Encoding Persistent Datatypes

