CS 4110

Programming Languages \& Logics

Lecture 37
Concurrency and Victory Lap

5 December 2014

Announcements

- Foster Office Hours 11am-12pm today

π-calculus Syntax

$$
x, y, z \in \mathcal{N}
$$

Names

π-calculus Syntax

$$
\begin{array}{rll}
x, y, z & \in \mathcal{N} & \text { Names } \\
\pi & ::=\tau|\bar{x}\langle y\rangle| x(y) \mid[x=y] \pi & \\
\text { Prefixes }
\end{array}
$$

π-calculus Syntax

$$
\begin{array}{rll}
x, y, z & \in \mathcal{N} & \text { Names } \\
\pi::=\tau|\bar{x}\langle y\rangle| x(y) \mid[x=y] \pi & \text { Prefixes } \\
M, N::=\mathbf{0}|\pi . P| M+M & \text { Summations }
\end{array}
$$

π-calculus Syntax

$$
\begin{array}{rll}
x, y, z & \in \mathcal{N} & \text { Names } \\
\pi & ::=\tau|\bar{x}\langle y\rangle| x(y) \mid[x=y] \pi & \\
M, N \quad::=\mathbf{0}|\pi . P| M+M & & \text { Summations } \\
P, Q, R & ::=M\left|P_{1}\right| P_{2}|\nu x . P|!P & \\
\text { Processes }
\end{array}
$$

Reaction

$$
\overline{\tau . P+M \rightarrow P} \text { R-Tau }
$$

Reaction

$$
\overline{\tau . P+M \rightarrow P} \text { R-Tau }
$$

$$
\overline{\left(\bar{x}\langle y\rangle \cdot P_{1}+M_{1}\right)\left|\left(x(z) \cdot P_{2}+M_{2}\right) \rightarrow P_{1}\right| P_{2}\{y / z\}} \text { R-React }
$$

Reaction

$$
\overline{\tau . P+M \rightarrow P} \text { R-Tau }
$$

$$
\begin{gathered}
\overline{\left(\bar{x}\langle y\rangle \cdot P_{1}+M_{1}\right)\left|\left(x(z) \cdot P_{2}+M_{2}\right) \rightarrow P_{1}\right| P_{2}\{y / z\}} \text { R-React } \\
\frac{P_{1} \rightarrow P_{1}^{\prime}}{P_{1}\left|P_{2} \rightarrow P_{1}^{\prime}\right| P_{2}} \text { R-Par }
\end{gathered}
$$

Reaction

$$
\overline{\tau . P+M \rightarrow P} \text { R-Tau }
$$

$$
\begin{gathered}
\overline{\left(\bar{x}\langle y\rangle \cdot P_{1}+M_{1}\right)\left|\left(x(z) \cdot P_{2}+M_{2}\right) \rightarrow P_{1}\right| P_{2}\{y / z\}} \text { R-React } \\
\frac{P_{1} \rightarrow P_{1}^{\prime}}{P_{1}\left|P_{2} \rightarrow P_{1}^{\prime}\right| P_{2}} \text { R-Par } \\
\frac{P \rightarrow P^{\prime}}{\nu x . P \rightarrow \nu x . P^{\prime}} \text { R-Res }
\end{gathered}
$$

Reaction

$$
\overline{\tau . P+M \rightarrow P} \text { R-Tau }
$$

$$
\begin{gathered}
\overline{\left(\bar{x}\langle y\rangle \cdot P_{1}+M_{1}\right)\left|\left(x(z) \cdot P_{2}+M_{2}\right) \rightarrow P_{1}\right| P_{2}\{y / z\}} \text { R-React } \\
\frac{P_{1} \rightarrow P_{1}^{\prime}}{P_{1}\left|P_{2} \rightarrow P_{1}^{\prime}\right| P_{2}} \text { R-Par } \\
\frac{P \rightarrow P^{\prime}}{\nu x . P \rightarrow \nu x . P^{\prime}} \text { R-Res }
\end{gathered}
$$

$$
\frac{P \equiv P^{\prime} \quad P^{\prime} \rightarrow Q^{\prime} \quad Q^{\prime} \equiv Q}{P \rightarrow Q} \text { R-Struct }
$$

Example: Encoding Booleans

Idea: encode a boolean value b as a process that receives two channels t and f on the channel / where the boolean is "located" and then signals on the corresponding channel

$$
\operatorname{True}(I) \triangleq I(t, f) \cdot \bar{t}
$$

Example: Encoding Booleans

Idea: encode a boolean value b as a process that receives two channels t and f on the channel / where the boolean is "located" and then signals on the corresponding channel

$$
\begin{aligned}
\operatorname{True}(I) & \triangleq I(t, f) \cdot \bar{t} \\
\text { False }(I) & \triangleq I(t, f) \cdot \bar{f}
\end{aligned}
$$

Example: Encoding Booleans

Idea: encode a boolean value b as a process that receives two channels t and f on the channel / where the boolean is "located" and then signals on the corresponding channel

$$
\begin{aligned}
\operatorname{True}(I) & \triangleq I(t, f) \cdot \bar{t} \\
\operatorname{False}(I) & \triangleq I(t, f) \cdot \bar{f} \\
\operatorname{Cond}(P, Q)(/) & \triangleq \nu t, f \cdot(\bar{l}\langle t, f\rangle \cdot(t . P+f . Q))
\end{aligned}
$$

Example: Encoding Naturals

Idea: encode a natural number value n as a process that receives two channels s and z on the channel c where the number is "located" and then signals on $s n$ times terminated by z

Example: Encoding Naturals

Idea: encode a natural number value n as a process that receives two channels s and z on the channel c where the number is "located" and then signals on $s n$ times terminated by z

$$
\operatorname{Zero}(c) \triangleq c(s, z) \cdot \bar{z}
$$

Example: Encoding Naturals

Idea: encode a natural number value n as a process that receives two channels s and z on the channel c where the number is "located" and then signals on $s n$ times terminated by z

$$
\begin{aligned}
\operatorname{Zero}(c) & \triangleq c(s, z) \cdot \bar{z} \\
\operatorname{succ}(n)(c) & \triangleq c(s, z) \cdot \bar{n}\langle s, z\rangle \cdot \bar{s}
\end{aligned}
$$

Encoding Lists

Idea: encode a list I as a process that receives two channels c and n on the channel / where the list is "located" and then signals on c with each value of the list, terminated by n

Encoding Lists

Idea: encode a list / as a process that receives two channels c and n on the channel / where the list is "located" and then signals on c with each value of the list, terminated by n

$$
\operatorname{Nil}(I) \triangleq I(n, c) \cdot \bar{n}
$$

Encoding Lists

Idea: encode a list I as a process that receives two channels c and n on the channel / where the list is "located" and then signals on c with each value of the list, terminated by n

$$
\begin{aligned}
\operatorname{Nil}(/) & \triangleq I(n, c) \cdot \bar{n} \\
\operatorname{Cons}(H, T)(/) & \triangleq \nu h, t \cdot(/(n, c) \cdot \bar{c}\langle h, t\rangle|H\langle h\rangle| T\langle t\rangle)
\end{aligned}
$$

Encoding Lists

Idea: encode a list I as a process that receives two channels c and n on the channel / where the list is "located" and then signals on c with each value of the list, terminated by n

$$
\begin{aligned}
\operatorname{Nil}(I) & \triangleq I(n, c) \cdot \bar{n} \\
\operatorname{Cons}(H, T)(I) & \triangleq \nu h, t \cdot(I(n, c) \cdot \bar{c}\langle h, t\rangle|H\langle h\rangle| T\langle t\rangle) \\
\operatorname{lsNil}(L)(r) & \triangleq \nu \mid, n, c \cdot(L\langle I\rangle \mid \bar{T}\langle n, c\rangle \cdot(n . \operatorname{True}\langle r\rangle+c(h, t) \cdot F a l s e\langle r\rangle))
\end{aligned}
$$

Pattern Matching

We can encode pattern matching on lists

$$
\begin{aligned}
& \text { case I of } \\
& \quad \text { Nil? } \Rightarrow P \\
& \quad \text { Cons? }(h, t) \Rightarrow Q
\end{aligned}
$$

Pattern Matching

We can encode pattern matching on lists

$$
\begin{aligned}
& \text { case I of } \\
& \quad \text { Nil? } \Rightarrow P \\
& \text { Cons? }(h, t) \Rightarrow Q
\end{aligned}
$$

Idea: send fresh channels n and c to / and test which it signals on:

Pattern Matching

We can encode pattern matching on lists

$$
\begin{aligned}
& \text { case I of } \\
& \text { Nil? } \Rightarrow P \\
& \text { Cons? }(h, t) \Rightarrow Q
\end{aligned}
$$

Idea: send fresh channels n and c to / and test which it signals on:

$$
\nu n, c . \bar{I}\langle n, c\rangle n \cdot P+c(h, t) \cdot Q
$$

Destructive Operations

$$
\begin{aligned}
\text { Copy }\langle\langle, m\rangle \triangleq & \text { case I of } \\
& \text { Nil? } \Rightarrow \text { Nil }\langle m\rangle \\
& \text { Cons? }(h, t) \Rightarrow \nu t^{\prime} .\left(m(n, c) \cdot \bar{c}\left\langle h, t^{\prime}\right\rangle \mid \operatorname{Copy}\left\langle t, t^{\prime}\right\rangle\right)
\end{aligned}
$$

Destructive Operations

$$
\begin{aligned}
\text { Copy }\langle l, m\rangle \triangleq & \text { case I of } \\
& \text { Nil? } \Rightarrow \text { Nil }\langle m\rangle \\
& \text { Cons? }(h, t) \Rightarrow \nu t^{\prime} .\left(m(n, c) . \bar{c}\left\langle h, t^{\prime}\right\rangle \mid \operatorname{Copy}\left\langle t, t^{\prime}\right\rangle\right)
\end{aligned}
$$

Join $\langle k, I, m\rangle \triangleq$ case k of
Nil? \Rightarrow Copy $\langle 1, m\rangle$
Cons? $(h, t) \Rightarrow \nu t^{\prime} .\left(m(n, c) . \bar{c}\left\langle h, t^{\prime}\right\rangle \mid J \operatorname{Join}\left\langle t, I, t^{\prime}\right\rangle\right)$

Encoding Persistent Datatypes

We can put a ! in front of processes to turn them into servers create arbitrary numbers of the original process

$$
\begin{aligned}
\operatorname{Nil}(I) & \triangleq!((n, c) \cdot \bar{n} \\
\operatorname{Cons}(H, T)(I) & \triangleq \nu h, t \cdot(!!(n, c) \cdot \bar{c}\langle h, t\rangle|H\langle h\rangle| T\langle t\rangle)
\end{aligned}
$$

This causes the list to still exist after sending or receiving a message

Encoding λ-calculus

$$
\begin{aligned}
\llbracket x \rrbracket(u) & \triangleq \bar{x}(u\rangle \\
\llbracket \lambda x \cdot e \rrbracket(u) & \triangleq u(x, y) \cdot \llbracket \llbracket \rrbracket(y) \\
\llbracket e_{1} e_{2} \rrbracket(u) & \triangleq \nu y \cdot\left(\llbracket e_{e} \rrbracket(y) \mid \nu x \cdot\left(\bar{y}(x, u\rangle \mid!x(w) \cdot \llbracket e_{2} \rrbracket(w)\right)\right)
\end{aligned}
$$

Bisimulation

When are two processes equal?
Perhaps the most important contributions of research on π calculus has been the development of the notion of bisimulation

Bisimulation

When are two processes equal?
Perhaps the most important contributions of research on π calculus has been the development of the notion of bisimulation

CS 4110 (Fall 2014)

Cornell University Department of Computer Science

MWF 9:05-9:55
Gates G01

		Home		Syilebus	cchertule			
Date	Topic	Notes	Reading	Assignments	12 October	More types	PDF	HW7 out
22 August	Introduction	PDF	Winskel 1		15 October	Record types	PDF	
24 August	Small-step semantics	PDF	Winskel 2	HW1 out	17 October	Subtyping	PDF	
27 August	Inductive definitions and proofs	PDF			19 October	Polymorphism	PDF	HWB out
29 August	Large-step semantics	PDF			25 October	More polymorphism	PDF	
31 August	IMP	PDF		HW2 out	27 October	Type inference	PDF	
3 September	No class (Labor Day)				29 October	Propositions-as-types	PDF	HW9 out
5 September	IMP properties	PDF			1 November	Existential types	PDF	
7 September	Denotational semantics	PDF		HW3 out	3 November	Objects	PDF	
10 September	Denotational semantics	PDF			5 November	Featherweight Java	PDF	HW10 out
12 September	Axiomatic semantics	PDF			8 November	Featherweight Java types	PDF	
14 September	Hoare logic	PDF		HW4 out	10 November	Review	PDF	
17 September	λ-calculus	PDF			12 November	Prelliminary Exam Ill		
19 September	More λ-calculus	PDF			15 November	Abstract interpretation	PDF	
21 September	λ-calculus encodings	PDF		HWS out	17 November	Concurrency	PDF	
24 September	Recursion	PDF			19 November	More concurrency	PDF	HW11 out
26 September	Definitional translation	PDF			22 November	Language-based security	PDF	
28 September	Review	PDF			24 November	Coq	PDF	
1 October	Preliminary Exam I				26 November	Noclass (Thanksgiving)		
3 October	Continuations	PDF			29 November	More Coq	PDF	
5 October	More continuations	PDF		HW6 out	1 December	Current trends in PL research	PDF	
8 October	No class (Fall Break)				3 December	Review	PDF	
10 October	Types	PDF			13 December	Final Exam		

CS 4110 (Fall 2014)

Programming Languages and Logics
MWF 905-9:55
Gates G01
Cornell University
Department of
Computer Sclence

Home Syllabus Schedule Resources

12 October	More types	PDF	HW7 out
15 October	Record types	PDF	
17 October	Subtyping	PDF	
19 October	Polymorphism	PDF	HWB out
25 October	More polymorphism	PDF	
27 October	Type inference	PDF	
29 October	Propositions-as-types	PDF	HW9 out
1 November	Existential types	PDF	
3 November	Objects	PDF	
5 November	Featherweight Java	PDF	HW10 out
8 November	Featherweight Java types	PDF	
10 November	Review	PDF	
12 November	Preliminary Exam ll		
15 November	Abstract interpretation	PDF	
17 November	Concurrency	PDF	
19 November	More concurrency	PDF	HWIt out
22 November	Language-based security	PDF	
24 November	Coq	PDF	
26 November	Noclass (Thanksgiving)		
29 November	More Coq	PDF	
1 December	Current trends in PL research	PDF	
3 Decermber	Review	PDF	
13 December	Final Exam		

CS 4110 (Fall 2014)

Programming Languages and Logics
MWF 905-9:55
Gates G01

Cornell University
Department of
Computer Sclence

Home Syllabus Schedule Resources

Date	Tople	Note	Asignments
22Augus:	Mathematical Preliminaries \&		
$\left\lvert\, \begin{aligned} & 24 \text { August } \\ & 27 \text { August } \end{aligned}\right.$	Operational Semantics		HWh out
29August	Lamestepsamantia	PDE	
31 August		PDF	HW2 out
3 Septamber	Noclast (Labo Disy)		
Denotational \& Axiomatic Semantics			
105eptember	Denotational semanticz	PDF	
125 eptember	frioratic semanitics	POF	
145eptember	Hoare logic	POF	HWY out
17 September	λ-calculus	PDF	
19 September	More λ-calculus	PDF	
21 September	λ-calculus encodings	PDF	HWS out
24 September	Recursion	PDF	
26 September	Definitional translation	PDF	
285 eptember	Review	PDF	
1 October	Preliminary Exam 1		
3 October	Continuations	PDF	
5 October	More continuationis	PDF	HW6 out
8 October	Noclass (Fall Break)		
10 October	Types	PDF	

12 October	More types	PDF	HW7 out
15 October	Record types	PDF	
17 October	Subtyping	PDF	
19 October	Polymorphism	PDF	HWB out
25 October	More polymorphism	PDF	
27 October	Type inference	PDF	
29 October	Propositions-as-types	PDF	HW9 out
1 November	Existential types	PDF	
3 November	Objects	PDF	
5 November	Featherweight Java	PDF	HW10 out
8 November	Featherweight Java types	PDF	
10 November	Review	PDF	
12 November	Preliminary Exam ll		
15 November	Abstract interpretation	PDF	
17 November	Concurrency	PDF	
19 November	More concurrency	PDF	HW11 out
22 November	Language-based security	PDF	
24 November	Coq	PDF	
26 November	Noclass (Thanksgiving)		
29 November	More Coq	PDF	
1 December	Current trends in PL research	PDF	
3 Decermber	Review	PDF	
13 December	Final Exam		

CS 4110 (Fall 2014)

Programming Languages and Logics
MWF 905-9:55
Gates G01

Cornell University
Department of
Computer Sclence

Home Syllabus Schedule Resources

Date	Tople	Notes	Asignments
22Augus:	Mathematical Preliminaries \&		
24 August	Operational Semantics		HWI out
27 August			
29August	Lurgeatepsemantia	PDE	
31 August	MP	PDF	HW2 out
35 cotamber	Noclass Labor Disy		
Denotational \& Axiomatic Semantics			
105eptember	Denotatonal semantics	PDF	
125 eptember	Axioratic semanitics	POF	
145eptember	Hoare logic	POF	HWH out
175eptamber	X-glculus	PDF	
195 eptember	Mared-alculus	PDF	
21 September	$\lambda \text {-calculus }$		HWS out
24 September			
26 September	Definitional transation	POF	
ABSentamher	Bevome	Pof	
1 October	Preliminary Exam I		
30ctrober	Continuations	PDF	
Sodaher	Korecontinuation	bus	Heveit
8 October	No class (Fall Break)		
10 October	Types	PDF	

12 October	More types	PDF	HW7 out
15 October	Record types	PDF	
17 October	Subtyping	PDF	
19 October	Polymorphism	PDF	HWB out
25 October	More polymorphism	PDF	
27 October	Type inference	PDF	
29 October	Propositions-as-types	PDF	HW9 out
1 November	Existential types	PDF	
3 November	Objects	PDF	
5 November	Featherweight Java	PDF	HW10 out
8 November	Featherweight Java types	PDF	
10 November	Review	PDF	
12 November	Preliminary Exam ll		
15 November	Abstract interpretation	PDF	
17 November	Concurrency	PDF	
19 November	More concurrency	PDF	HWIt out
22 November	Language-based security	PDF	
24 November	Coq	PDF	
26 November	Noclass (Thanksgiving)		
29 November	More Coq	PDF	
1 December	Current trends in PL research	PDF	
3 Decermber	Review	PDF	
13 December	Final Exam		

CS 4110 (Fall 2014)

Programming Languages and Logics
MWF 905-9:55
Gates G01

Cornell University
Department of
Computer Sclence

Home Syllabus Schedule Resources

Date	Tople	Note	Asignments
22Augus:	Mathematical Preliminaries \&		
24 August	Operational Semantics		HWh out
29August	Lumpentep semantia	PDE	
31 August	(MP	PDF	HW2 out
35 cotamber	Nocosis labor Disy		
Denotational \& Axiomatic Semantics			
105eptember	Denotatonal semantica	PDF	
125 eptember	friorratic semantics	POF	
145 eptember	Hoare logic	POF	HWM out
175 eptember	X-alculus	PDF	
195 eptember	Mared-alculus	PDF	
21 September	$\lambda \text {-calculus }$		HWS out
24 September			
$2650 p t e m b e r$	Delinitional transiation	POF	
a8Sontomber	- Prelim	-nt	
1 Oataber	Preliminary Exam I		
30 ataber	continuations	PDF	
siodtaher	Mourcontionation	pone	Hekoul
8 October	No class [Fall Break]		
10 October	Types	PDF	

12 October	More types	PDF	HW7 out
15 October	Record types	PDF	
17 October	Subtyping	PDF	
19 October	Polymorphism	PDF	HWB out
25 October	More polymorphism	PDF	
27 October	Type inference	PDF	
29 October	Propositions-as-types	PDF	HW9 out
1 November	Existential types	PDF	
3 November	Objects	PDF	
5 November	Featherweight Java	PDF	HW10 out
8 November	Featherweight Java types	PDF	
10 November	Review	PDF	
12 November	Preliminary Exam ll		
15 November	Abstract interpretation	PDF	
17 November	Concurrency	PDF	
19 November	More concurrency	PDF	HWIt out
22 November	Language-based security	PDF	
24 November	Coq	PDF	
26 November	Noclass (Thanksgiving)		
29 November	More Coq	PDF	
1 December	Current trends in PL research	PDF	
3 Decermber	Review	PDF	
13 December	Final Exam		

CS 4110 (Fall 2014)

Programming Languages and Logics
MWF 905-9:55
Gates G01

Cornell University
Department of
Computer Sclence

Home Syllabus Schedule Resources

Date	Mathematical Preliminaries \&		Assignments
22 Augut			
5420 unt	Operational Semantics		HW out
27 Augut			
Saugut	turgetepemanta	de	
31 Augut	mp	PDF	Hw2 out
550 -	Nocastlabo Disy		
Denotational \& Axiomatic Semantics			
roseplember	Denotatonal emmantic	pof	
12 eptermber	Axionatcemenita	POF	
145 eptember	Heralonk	POF	Hwout
75eamay	रobulus	PbF	
19 Septernber	Maneג-wiculus	PDF	
215 September	λ-calculus		HWS out
24Septumber			
\%6contimiter	12 elinitanalumitation	POF	
10 abber	Preliminary Exam I		
Ocatber	continutions	por	
30ataber	Fall Break		
100 cober	Types	PDF	

12 October	More types	PDF	HW7 out
15 October	Record types	PDF	
17 October	Subtyping	PDF	
19 October	Polymorphism	PDF	HWB out
25 October	More polymorphism	PDF	
27 October	Type inference	PDF	
29 October	Propositions-as-types	PDF	HW9 out
1 November	Existential types	PDF	
3 November	Objects	PDF	
5 November	Featherweight java	PDF	HW10 out
8 November	Feathenweight Java types	PDF	
10 November	Review	PDF	
12 November	Preliminary Exam Il		
15 November	Abstractinterpretation	PDF	
17 November	Concurrency	PDF	
19 November	More concurrency	PDF	HW11 out
22 November	Language-based security	PDF	
24 November	Coq	PDF	
26 November	Noclass (Thanksgiving)		
29 November	More Coq	PDF	
1 December	Currenttrends in PL research	PDF	
3 December	Review	PDF	
13 December	Final Exam		

CS 4110 (Fall 2014)

Programming Languages and Logics
MWF 905-9.5s
Gates G01

Home Syllabus Schedule Resources

Operational Semantics
Denotational \& Axiomatic Semantics
λ-calculus
Preliminary Exam I
Fall Break

120 ctober	Moretypes	PDF	HWT out
15 October	Precord types	PDF	
17 October	Subtyping	PDF	
19 October	Poymorphism	PDF	HWsout
250 Otaber	Type Systems \&		
27 October			
200.tutur	Program Analyses		HW9 out
1 November	Exiftential lypes	PDF	
3 Novembei	Objects	PDF	
5 Novembef	Featherweig htava	PDF	HWtorout
8 Novernher	Featherwolghtava types	PDF	
10 Nowmber	Pevimu	PDF	
12 November	Preliminary Exam Il		
15 November	Abstract interpretation	PDF	
17 November	Concurrency	PDF	
19 November	More concurrency	PDF	HW11 out
22 November	Language-based security	PDF	
24 November	Coq	PDF	
26 November	Noclass (Thanksgiving)		
29 November	More Coq	PDF	
1 December	Current trends in PL research	PDF	
3 December	Review	PDF	
13 December	Final Exam		

CS 4110 (Fall 2014)

Programming Languages and Logics
MWF 905-9.5s
Gates G01

Home Syllabus Schedule Resources

Operational Semantics
Denotational \& Axiomatic Semantics
λ-calculus
Preliminary Exam I
Fall Break

12 October	Moretypes	PDF	HWTout
15 October	fecord types	PDF	
17 October	Subryping	PDF	
19 Octaber	Poymophism	PDF	HW6out
250 ataber	Type Systems \&		
27 October	Program Analyses		HW9 out
1 November	Exitental dypes	PDF	
3 November	Objects	Pbr	
5 November	Feathemeig thva	PDF	HWtout
3 November	Feathemeghtava types	PDF	
10 Nowmmer	Preliminary Exam II		
12 November			
15 November	Abstract interpretation	PDF	
17 November	Concurrency	PDF	
19 November	More concurrency	PDF	HW11 out
22 November	Language-based secuity	PDF	
24 November	Coq	PDF	
26 November	Noclass (Thanksgiving)		
29 November	More Coq	PDF	
1 December	Currenttrends in PL research	PDF	
3 December	Review	PDF	
13 December	Final Exam		

CS 4110 (Fall 2014)

Programming Languages and Logics

Home Syllabus Schedule Resources

Operational Semantics
Denotational \& Axiomatic Semantics
λ-calculus
Preliminary Exam I
Fall Break

12 asober	Mat poss por	HWFout
150 aboer	Peodides PoF	
170 caber	Subyang por	
180 cober	roymophem por	Hwout
250 crseer	We. Type Systems \&	
20 caber	Program Analyses	Wout
iNorenbee	tumumar	
3 Norenbe	Doject por	
5 Soumber	Tatemejotusa por	Hwoout
onarme	Fatiemeghtasarpes por	
12 Novenber	Pr Preliminary Exam II	
ISNowemer	comanturation	
19 Na	Neomarimo por	Hwitout
23Nownter	unow Advanced Topics	
28 Norember	a Advanced Topics	
29 Nowember	Weocos por	
+hemer		
30emer	Review por	
13 December	Final fram	

CS 4110 (Fall 2014)

Programming Languages and Logics

Home Syllabus Schedule Resources

Dote	Mathematical Preliminaries \&		Axsionments
22Augus			
${ }^{24}$ Augurt	Operational Semantics		HW out
27 Augut			
Paugut	tupenteosmanta	pe	
31 August	mp	PDF	Hwzout
560-60	Noclastluba Dish		
	notational \&	atic	tics
roseplember	Denoratonal emantic	pof	
12 eplember	Axaratcemintica	POF	
14 epplember	Heamede	POF	Hwout
\%	xatious	PbF	
12Septernber	Mane-alauls	PoF	
21 September			HWS out
24.5 epumber	Rearion		
265 eptumbe:	orinitionaltantato	POF	
10acoer	Prelim	xam	
Poctober	coninuatons	pof	
30atare	Fall		
D0acober	Types	por	

| |
| :---: | :---: |
| Program Analyses |
| Preliminary Exam II |
| Advanced Topics |
| Final Exam |

CS 4110 (Fall 2014)

Programming Languages and Logics
MWF 9005-9:5s
Gates G01
Cornell University
Department of
Computer Science

Final Topics

- Mathematical Preliminaries (inductive definitions)

Final Topics

- Mathematical Preliminaries (inductive definitions)
- Semantics (operational, axiomatic, denotational)

Final Topics

- Mathematical Preliminaries (inductive definitions)
- Semantics (operational, axiomatic, denotational)
- λ-calculus (basics, encodings, extensions)

Final Topics

- Mathematical Preliminaries (inductive definitions)
- Semantics (operational, axiomatic, denotational)
- λ-calculus (basics, encodings, extensions)
- Type systems (simple, extensions, properties)

Final Topics

- Mathematical Preliminaries (inductive definitions)
- Semantics (operational, axiomatic, denotational)
- λ-calculus (basics, encodings, extensions)
- Type systems (simple, extensions, properties)
- Advanced topics (TAL, concurrency)

Final Topics

- Mathematical Preliminaries (inductive definitions)
- Semantics (operational, axiomatic, denotational)
- λ-calculus (basics, encodings, extensions)
- Type systems (simple, extensions, properties)
- Advanced topics (TAL, concurrency)

Expect to solve probems just like the ones we've seen throughout the course...

Final Topics

- Mathematical Preliminaries (inductive definitions)
- Semantics (operational, axiomatic, denotational)
- λ-calculus (basics, encodings, extensions)
- Type systems (simple, extensions, properties)
- Advanced topics (TAL, concurrency)

Expect to solve probems just like the ones we've seen throughout the course...
...and to apply the skills you've acquired to new problems too!

Final Logistics

- Date: Friday, December 12th
- Time: 9-11:30am
- Where: Gates G01
- Practice: Available today
- Review: Next week?

Going further

Going further

- CS 6110 - Advanced Programming Languages

Going further

- CS 6110 - Advanced Programming Languages
- CS 611X - Certified Software Systems

Going further

- CS 6110 - Advanced Programming Languages
- CS 611X - Certified Software Systems
- CS 7190 - Seminar in Programming Languages

Going further

- CS 6110 - Advanced Programming Languages
- CS 611X - Certified Software Systems
- CS 7190 - Seminar in Programming Languages
- CS 4999 - Independent Research

Going further

- CS 6110 - Advanced Programming Languages
- CS 611X - Certified Software Systems
- CS 7190 - Seminar in Programming Languages
- CS 4999 - Independent Research

Thank you, and stay in touch!

