CS 4110

Programming Languages \& Logics

Lecture 36
Concurrency

3 December 2014

Announcements

- None!

Concurrency

All of the languages we have seen so far in this course have been sequential, performing one step of computation at a time.

In the next few lectures we will consider languages where multiple threads of execution may be interleaved simultaneously.

These languages can be used to model computations that execute on parallel and distributed architectures.

As a first step, let's extend IMP with a new a parallel composition command:

As a first step, let's extend IMP with a new a parallel composition command:

```
\(a::=x|n| a_{1}+a_{2}\)
\(b::=\) true \(\mid\) false \(\mid a_{1}<a_{2}\)
\(c::=\) skip \(|x:=a| c_{1} ; c_{2} \mid\) if \(b\) then \(c_{1}\) else \(c_{2} \mid\) while \(b\) do \(c\)
\(c_{1} \| c_{2}\)
```


Operational Semantics

and extend the small-step operational semantics with the following rules for $c_{1} \| c_{2}$, which interleave the execution of c_{1} and c_{2} :

$$
\frac{\left\langle\sigma, c_{1}\right\rangle \rightarrow\left\langle\sigma^{\prime}, c_{1}^{\prime}\right\rangle}{\left\langle\sigma, c_{1} \| c_{2}\right\rangle \rightarrow\left\langle\sigma^{\prime}, c_{1}^{\prime} \| c_{2}\right\rangle}
$$

Operational Semantics

and extend the small-step operational semantics with the following rules for $c_{1} \| c_{2}$, which interleave the execution of c_{1} and c_{2} :

$$
\begin{aligned}
& \frac{\left\langle\sigma, c_{1}\right\rangle}{} \rightarrow\left\langle\sigma^{\prime}, c_{1}^{\prime}\right\rangle \\
&\left\langle\sigma, c_{1} \| c_{2}\right\rangle \rightarrow\left\langle\sigma^{\prime}, c_{1}^{\prime} \| c_{2}\right\rangle \\
& \frac{\left\langle\sigma, c_{2}\right\rangle}{\left\langle\sigma, c_{1} \| c_{2}\right\rangle} \rightarrow\left\langle\sigma^{\prime} c_{2}^{\prime}\right\rangle \\
&\left.\hline \sigma^{\prime}, c_{1} \| c_{2}^{\prime}\right\rangle
\end{aligned}
$$

Operational Semantics

and extend the small-step operational semantics with the following rules for $c_{1} \| c_{2}$, which interleave the execution of c_{1} and c_{2} :

$$
\begin{aligned}
& \frac{\left\langle\sigma, c_{1}\right\rangle}{\left\langle\sigma, c_{1} \| c_{2}\right\rangle} \rightarrow\left\langle\sigma^{\prime}, c_{1}^{\prime}\right\rangle \\
&\left.c_{1}^{\prime} \| c_{2}\right\rangle \\
& \frac{\left\langle\sigma, c_{2}\right\rangle}{\left\langle\sigma, c_{1} \| c_{2}\right\rangle} \rightarrow\left\langle\sigma^{\prime} c_{2}^{\prime}\right\rangle \\
&\langle\sigma, \text { skip } \| \text { skip }\rangle \rightarrow\langle\sigma, \text { skip }\rangle
\end{aligned}
$$

Operational Semantics

and extend the small-step operational semantics with the following rules for $c_{1} \| c_{2}$, which interleave the execution of c_{1} and c_{2} :

$$
\begin{aligned}
& \frac{\left\langle\sigma, c_{1}\right\rangle}{\left\langle\sigma, c_{1} \| c_{2}\right\rangle} \rightarrow\left\langle\sigma^{\prime}, c_{1}^{\prime}\right\rangle \\
& \frac{\left\langle\sigma, \sigma^{\prime}, c_{1}^{\prime} \| c_{2}\right\rangle}{} \rightarrow\left\langle\sigma^{\prime} c_{2}^{\prime}\right\rangle \\
&\left\langle\sigma, c_{1} \| c_{2}\right\rangle \rightarrow\left\langle\sigma^{\prime}, c_{1} \| c_{2}^{\prime}\right\rangle \\
&\langle\sigma, \text { skip } \| \text { skip }\rangle \rightarrow\langle\sigma, \text { skip }\rangle
\end{aligned}
$$

Note that the rules for parallel compositions $c_{1} \| c_{2}$ allow either sub-command to take a step; two sub-commands can interleave read and write operations involving the same store.

Process Calculi

In the 1970s, Tony Hoare, Robin Milner, and others correctly observed that in the future, computers would have multiple computing cores, but each would have its own independent store.

Hoare's Communicating Sequential Processes were an early and highly-influential language that capture a message passing form of concurrency.

Many languages have built on CSP including Milner's CCS and π-calculus, Petri nets, and others.

π-calculus Syntax

The π-calculus is a minimal formalism that attempts to capture the essence message-passing concurrency

π-calculus Syntax

The π-calculus is a minimal formalism that attempts to capture the essence message-passing concurrency

The key constructs are based on the ability to interact by sending and receiving channel names

π-calculus Syntax

The π-calculus is a minimal formalism that attempts to capture the essence message-passing concurrency

The key constructs are based on the ability to interact by sending and receiving channel names

$$
x, y, z \in \mathcal{N}
$$

Names

π-calculus Syntax

The π-calculus is a minimal formalism that attempts to capture the essence message-passing concurrency

The key constructs are based on the ability to interact by sending and receiving channel names

$$
\begin{array}{rll}
x, y, z & \in \mathcal{N} & \text { Names } \\
\pi \quad:=\tau|\bar{x}\langle y\rangle| x(y) \mid[x=y] \pi & & \text { Prefixes }
\end{array}
$$

π-calculus Syntax

The π-calculus is a minimal formalism that attempts to capture the essence message-passing concurrency

The key constructs are based on the ability to interact by sending and receiving channel names

$$
\begin{array}{rll}
x, y, z & \in \mathcal{N} & \text { Names } \\
\pi & ::=\tau|\bar{x}\langle y\rangle| x(y) \mid[x=y] \pi & \\
\text { Prefixes } \\
M, N & ::=\mathbf{0}|\pi . P| M+M & \\
\text { Summations }
\end{array}
$$

π-calculus Syntax

The π-calculus is a minimal formalism that attempts to capture the essence message-passing concurrency

The key constructs are based on the ability to interact by sending and receiving channel names

$$
\begin{array}{rll}
x, y, z & \in \mathcal{N} & \text { Names } \\
\pi & ::=\tau|\bar{x}\langle y\rangle| x(y) \mid[x=y] \pi & \text { Prefixes } \\
M, N & ::=\mathbf{0}|\pi . P| M+M & \text { Summations } \\
P, Q, R & ::=M\left|P_{1}\right| P_{2}|\nu x . P|!P & \text { Processes }
\end{array}
$$

π-calculus Syntax

The π-calculus is a minimal formalism that attempts to capture the essence message-passing concurrency

The key constructs are based on the ability to interact by sending and receiving channel names

$$
\begin{array}{rll}
x, y, z & \in \mathcal{N} & \text { Names } \\
\pi & ::=\tau|\bar{x}\langle y\rangle| x(y) \mid[x=y] \pi & \\
\text { Prefixes } \\
M, N & ::=\mathbf{0}|\pi . P| M+M & \text { Summations } \\
P, Q, R & ::=M\left|P_{1}\right| P_{2}|\nu x . P|!P & \text { Processes }
\end{array}
$$

In examples, we will often appreviate $\pi .0$ as π

Reaction

$$
\overline{\tau . P+M \rightarrow P} \text { R-Tau }
$$

Reaction

$$
\overline{\tau . P+M \rightarrow P} \text { R-Tau }
$$

$$
\overline{\left(\bar{x}\langle y\rangle \cdot P_{1}+M_{1}\right)\left|\left(x(z) \cdot P_{2}+M_{2}\right) \rightarrow P_{1}\right| P_{2}\{y / z\}} \text { R-React }
$$

Reaction

$$
\overline{\tau . P+M \rightarrow P} \text { R-Tau }
$$

$$
\begin{gathered}
\overline{\left(\bar{x}\langle y\rangle \cdot P_{1}+M_{1}\right)\left|\left(x(z) \cdot P_{2}+M_{2}\right) \rightarrow P_{1}\right| P_{2}\{y / z\}} \text { R-React } \\
\frac{P_{1} \rightarrow P_{1}^{\prime}}{P_{1}\left|P_{2} \rightarrow P_{1}^{\prime}\right| P_{2}} \text { R-Par }
\end{gathered}
$$

Reaction

$$
\overline{\tau . P+M \rightarrow P} \text { R-Tau }
$$

$$
\begin{gathered}
\overline{\left(\bar{x}\langle y\rangle \cdot P_{1}+M_{1}\right)\left|\left(x(z) \cdot P_{2}+M_{2}\right) \rightarrow P_{1}\right| P_{2}\{y / z\}} \text { R-React } \\
\frac{P_{1} \rightarrow P_{1}^{\prime}}{P_{1}\left|P_{2} \rightarrow P_{1}^{\prime}\right| P_{2}} \text { R-Par } \\
\frac{P \rightarrow P^{\prime}}{\nu x . P \rightarrow \nu x . P^{\prime}} \text { R-Res }
\end{gathered}
$$

Reaction

$$
\overline{\tau . P+M \rightarrow P} \text { R-Tau }
$$

$$
\begin{gathered}
\overline{\left(\bar{x}\langle y\rangle \cdot P_{1}+M_{1}\right)\left|\left(x(z) \cdot P_{2}+M_{2}\right) \rightarrow P_{1}\right| P_{2}\{y / z\}} \text { R-React } \\
\frac{P_{1} \rightarrow P_{1}^{\prime}}{P_{1}\left|P_{2} \rightarrow P_{1}^{\prime}\right| P_{2}} \text { R-Par } \\
\frac{P \rightarrow P^{\prime}}{\nu x . P \rightarrow \nu x . P^{\prime}} \text { R-Res }
\end{gathered}
$$

$$
\frac{P \equiv P^{\prime} \quad P^{\prime} \rightarrow Q^{\prime} \quad Q^{\prime} \equiv Q}{P \rightarrow Q} \text { R-Struct }
$$

Structural Congruence

Definition (Congruence)

An equivalence relation \mathcal{S} is a congruence if $P \mathcal{S} Q$ implies $C[P] \mathcal{S} C[Q]$ for every context C.

Structural Congruence

Definition (Structural Congruence)

$$
\begin{array}{rlrl}
{[x=x] \pi . P} & \equiv \pi . P & !P & \equiv P \mid!P \\
M_{1}+\left(M_{2}+M_{3}\right) & \equiv\left(M_{1}+M_{2}\right)+M_{3} & M_{1}+M_{2} & \equiv M_{2}+M_{1} \\
P_{1} \mid\left(P_{2} \mid P_{3}\right) & \equiv\left(P_{1} \mid P_{2}\right) \mid P_{3} & P_{1} \mid P_{2} & \equiv P_{2} \mid P_{1} \\
M+\mathbf{0} & \equiv M & P \mid \mathbf{0} \equiv P \\
\nu x . \nu y . P & \equiv \nu y . \nu x . P & \nu x . \mathbf{0} \equiv \mathbf{0} \\
\nu x . P_{1}\left|P_{2} \equiv P_{1}\right|\left(\nu x . P_{2}\right), \text { if } x \notin \mathrm{FV}\left(P_{1}\right)
\end{array}
$$

Structural Congruence

Theorem (Standard Form)

Each process is structurally congruent to one of the form

$$
\nu \vec{x} .\left(M_{1}|\ldots| M_{j}\left|!P_{1}\right| \ldots \mid!P_{k}\right)
$$

where each P_{i} is also in standard form.

Structural Congruence

Theorem (Standard Form)

Each process is structurally congruent to one of the form

$$
\nu \vec{x} .\left(M_{1}|\ldots| M_{j}\left|!P_{1}\right| \ldots \mid!P_{k}\right)
$$

where each P_{i} is also in standard form.

Proof (sketch): repeatedly use α-conversion and the scope extrusion axiom: $P|\nu x . Q \equiv \nu x . P| Q$.

Example

$$
a(x) \cdot \bar{b}\langle x\rangle \mid \nu z \cdot(\bar{a}\langle z\rangle)
$$

Example

$$
a(x)+b(x) \mid \nu z \cdot(\bar{a}\langle z\rangle+\bar{b}\langle z\rangle)
$$

Example

$$
!x(u) \cdot \bar{x}\langle\operatorname{succ} u\rangle
$$

Programming in the π-calculus

Just as with λ-calculus, we can encode richer data structures and computations using the π-calculus primitives.

Polyadic π-Calculus

The send and receive primitives are monadic-they communicate a single name over a given channel. It is often useful to be able to send several names.

Polyadic π-Calculus

The send and receive primitives are monadic-they communicate a single name over a given channel. It is often useful to be able to send several names.

We can try to encode polyadic sends and receives as follows:

$$
\begin{aligned}
\bar{x}\left\langle y_{1}, \ldots, y_{k}\right\rangle \cdot P & \triangleq \bar{x}\left\langle y_{1}\right\rangle \ldots \bar{x}\left\langle y_{k}\right\rangle \cdot P \\
x\left(z_{1}, \ldots, z_{k}\right) \cdot P & \triangleq x\left(z_{1}\right) \ldots \bar{x}\left\langle z_{k}\right\rangle \cdot P
\end{aligned}
$$

Polyadic π-Calculus

The send and receive primitives are monadic-they communicate a single name over a given channel. It is often useful to be able to send several names.

We can try to encode polyadic sends and receives as follows:

$$
\begin{aligned}
& \bar{x}\left\langle y_{1}, \ldots, y_{k}\right\rangle \cdot P \triangleq \bar{x}\left\langle y_{1}\right\rangle \ldots \bar{x}\left\langle y_{k}\right\rangle \cdot P \\
& x\left(z_{1}, \ldots, z_{k}\right) \cdot P \triangleq x\left(z_{1}\right) \ldots \bar{x}\left\langle z_{k}\right\rangle \cdot P
\end{aligned}
$$

But unfortunately this doesn't work... why?

Polyadic π-calculus

To obtain an encoding that works correctly, we can create a fresh name and communicate the values over that channel:

$$
\bar{x}\left\langle y_{1}, \ldots, y_{k}\right\rangle \cdot P \triangleq \nu w \cdot\left(\bar{x}\langle w\rangle \cdot \bar{w}\left\langle y_{1}\right\rangle \ldots . \bar{w}\left\langle y_{k}\right\rangle\right) \cdot P
$$

where $w \notin \mathrm{FV}(P)$

$$
x\left(z_{1}, \ldots, z_{k}\right) \cdot P \triangleq x(w) \cdot w\left(z_{1}\right) \ldots . \bar{w}\left\langle z_{k}\right\rangle \cdot P
$$

Polyadic π-calculus

To obtain an encoding that works correctly, we can create a fresh name and communicate the values over that channel:

$$
\begin{aligned}
& \bar{x}\left\langle y_{1}, \ldots, y_{k}\right\rangle \cdot P \triangleq \nu w \cdot\left(\bar{x}\langle w\rangle \cdot \bar{w}\left\langle y_{1}\right\rangle \ldots \cdot \bar{w}\left\langle y_{k}\right\rangle\right) \cdot P \\
& \text { where } w \notin \mathrm{FV}(P) \\
& x\left(z_{1}, \ldots, z_{k}\right) \cdot P \triangleq x(w) \cdot w\left(z_{1}\right) \ldots \cdot \bar{w}\left\langle z_{k}\right\rangle \cdot P
\end{aligned}
$$

Using this (adequate) encoding, we will freely use polyadic sends and receives in examples.

$$
\overline{\left(\overline{\vec{x}}(\vec{y}) \cdot P_{1}+M_{1}\right)\left|\left(\vec{x}(\vec{z}) \cdot P_{2}+M_{2}\right) \rightarrow P_{1}\right| P_{2}\{\vec{y} / \vec{z}\}} \text { R-PolyReact }
$$

Encoding Recursion

Idea: Suppose we want to encode P where $A(\vec{x}) \triangleq P_{A}$.

- Pick a name a to stand for A.
- Let (Q) stand for Q with occurrences of $A\langle\bar{z}\rangle$ replaced by $\bar{a}\langle\vec{z}\rangle$.
- Produce νa. (($\left.P \mid) \mid!a(\vec{x}) .\left(P_{A} \mid\right)\right)$

Example: Buffer

Consider a recursive definition of a simple buffer:

$$
\begin{aligned}
B(I, r) & \triangleq r(x) \cdot C\langle x, I, r\rangle \\
C(x, I, r) & \triangleq T\langle x\rangle \cdot B\langle I, r\rangle
\end{aligned}
$$

Example: Buffer

Consider a recursive definition of a simple buffer:

$$
\begin{aligned}
B(I, r) & \triangleq r(x) \cdot C\langle x, I, r\rangle \\
C(x, I, r) & \triangleq \bar{T}\langle x\rangle \cdot B\langle I, r\rangle
\end{aligned}
$$

When encoded this becomes

$$
\nu b . \nu c \cdot(\bar{b}\langle l, r\rangle|!b(1, r) \cdot r(x) \cdot \bar{c}\langle x, I, r\rangle|!c(x, I, r) \cdot \bar{I}\langle x\rangle \cdot \bar{b}\langle\mid, r\rangle)
$$

