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Announcements

• None!
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Concurrency

All of the languages we have seen so far in this course have been
sequential, performing one step of computation at a time.

In the next few lectures we will consider languages where multiple
threads of execution may be interleaved simultaneously.

These languages can be used to model computations that execute
on parallel and distributed architectures.
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IMP with Parallel Composition

As a first step, let’s extend IMP with a new a parallel composition
command:

a ::= x | n | a1 + a2

b ::= true | false | a1 < a2

c ::= skip | x := a | c1; c2 | if b then c1 else c2 | while b do c
| c1 || c2
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Operational Semantics

and extend the small-step operational semantics with the following
rules for c1 || c2, which interleave the execution of c1 and c2:

⟨σ, c1⟩ → ⟨σ′, c′1⟩
⟨σ, c1 || c2⟩ → ⟨σ′, c′1 || c2⟩

⟨σ, c2⟩ → ⟨σ.′c′2⟩
⟨σ, c1 || c2⟩ → ⟨σ′, c1 || c′2⟩

⟨σ, skip || skip⟩ → ⟨σ, skip⟩

Note that the rules for parallel compositions c1 || c2 allow either
sub-command to take a step; two sub-commands can interleave
read and write operations involving the same store.
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Process Calculi

In the 1970s, Tony Hoare, Robin Milner, and others correctly
observed that in the future, computers would have multiple
computing cores, but each would have its own independent store.

Hoare’s Communicating Sequential Processes were an early and
highly-influential language that capture a message passing form of
concurrency.

Many languages have built on CSP including Milner’s CCS and
π-calculus, Petri nets, and others.
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π-calculus Syntax

The π-calculus is a minimal formalism that attempts to capture the
essence message-passing concurrency

The key constructs are based on the ability to interact by sending
and receiving channel names

x, y, z ∈ N Names

π ::= τ | x⟨y⟩ | x(y) | [x = y]π Prefixes

M,N ::= 0 | π.P | M+M Summations

P,Q, R ::= M | P1 | P2 | νx. P | !P Processes

In examples, we will often appreviate π.0 as π
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Reaction

τ.P+M → P
R-Tau

(x⟨y⟩.P1 +M1) | (x(z).P2 +M2) → P1 | P2{y/z}
R-React

P1 → P′1
P1 | P2 → P′1 | P2

R-Par

P → P′

νx. P → νx. P′
R-Res

P ≡ P′ P′ → Q′ Q′ ≡ Q

P → Q
R-Struct
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Structural Congruence

Definition (Congruence)

An equivalence relation S is a congruence if P S Q implies
C[P] S C[Q] for every context C.
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Structural Congruence

Definition (Structural Congruence)

[x = x]π.P≡π.P !P≡ P |!P

M1 + (M2 +M3)≡ (M1 +M2) +M3 M1 +M2 ≡M2 +M1

P1 | (P2 | P3)≡ (P1 | P2) | P3 P1 | P2 ≡ P2 | P1

M+ 0≡M P | 0≡ P

νx. νy. P≡ νy. νx. P νx. 0≡ 0

νx. P1 | P2 ≡ P1 | (νx. P2), if x ̸∈ FV(P1)
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Structural Congruence

Theorem (Standard Form)
Each process is structurally congruent to one of the form

ν x⃗. (M1 | . . . | Mj |!P1 | . . . |!Pk)

where each Pi is also in standard form.

Proof (sketch): repeatedly use α-conversion and the scope
extrusion axiom: P | νx. Q ≡ νx. P | Q.
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Example

a(x).b̄⟨x⟩ | νz. (ā⟨z⟩)
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Example

a(x) + b(x) | νz. (ā⟨z⟩ + b̄⟨z⟩)
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Example

!x(u).x̄⟨succ u⟩
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Programming in the π-calculus

Just as with λ-calculus, we can encode richer data structures and
computations using the π-calculus primitives.
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Polyadic π-Calculus

The send and receive primitives are monadic—they communicate
a single name over a given channel. It is often useful to be able to
send several names.

We can try to encode polyadic sends and receives as follows:

x⟨y1, . . . , yk⟩.P ≜ x⟨y1⟩. . . . .x⟨yk⟩.P

x(z1, . . . , zk).P ≜ x(z1). . . . .x⟨zk⟩.P

But unfortunately this doesn’t work... why?
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Polyadic π-calculus

To obtain an encoding that works correctly, we can create a fresh
name and communicate the values over that channel:

x⟨y1, . . . , yk⟩.P ≜ νw. (x⟨w⟩.w⟨y1⟩. . . . .w⟨yk⟩).P
where w ̸∈ FV(P)

x(z1, . . . , zk).P ≜ x(w).w(z1). . . . .w⟨zk⟩.P

Using this (adequate) encoding, we will freely use polyadic sends
and receives in examples.

(⃗x⟨⃗y⟩.P1 +M1) | (⃗x(⃗z).P2 +M2) → P1 | P2{⃗y/⃗z}
R-PolyReact
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Encoding Recursion

Idea: Suppose we want to encode P where A(⃗x) ≜ PA.

• Pick a name a to stand for A.
• Let (|Q|) stand for Q with occurrences of A⟨⃗z⟩ replaced by a⟨⃗z⟩.
• Produce νa. ((|P|) | !a(⃗x).(|PA|))
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Example: Buffer

Consider a recursive definition of a simple buffer:

B(l, r) ≜ r(x).C⟨x, l, r⟩

C(x, l, r) ≜ l⟨x⟩.B⟨l, r⟩

When encoded this becomes

νb. νc.
(
b⟨l, r⟩ | !b(l, r).r(x).c⟨x, l, r⟩ | !c(x, l, r).l⟨x⟩.b⟨l, r⟩

)
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