

CS 4110

Programming Languages & Logics

Lecture 33
Typed Assembly Language

21 November 2014

Overview

Slogan: “Safety through types”

• An architecture for safe mobile code
▶ Download annotated binaries from an untrusted code producer
▶ Verify code using a trusted typechecker
▶ Link and execute without errors

• Security properties hinge on understanding behavior
▶ Must reason precisely about programs
▶ Define “good” and “bad” behaviors
▶ Identify and rule out “bad programs”

• Typed Assembly Language (TAL) is a framework that
accomplishes these goals in a setting where the programs in
question are x86 executables

2

Overview

Slogan: “Safety through types”

• An architecture for safe mobile code
▶ Download annotated binaries from an untrusted code producer
▶ Verify code using a trusted typechecker
▶ Link and execute without errors

• Security properties hinge on understanding behavior
▶ Must reason precisely about programs
▶ Define “good” and “bad” behaviors
▶ Identify and rule out “bad programs”

• Typed Assembly Language (TAL) is a framework that
accomplishes these goals in a setting where the programs in
question are x86 executables

2

Overview

Slogan: “Safety through types”

• An architecture for safe mobile code
▶ Download annotated binaries from an untrusted code producer
▶ Verify code using a trusted typechecker
▶ Link and execute without errors

• Security properties hinge on understanding behavior
▶ Must reason precisely about programs
▶ Define “good” and “bad” behaviors
▶ Identify and rule out “bad programs”

• Typed Assembly Language (TAL) is a framework that
accomplishes these goals in a setting where the programs in
question are x86 executables

2

Overview

Slogan: “Safety through types”

• An architecture for safe mobile code
▶ Download annotated binaries from an untrusted code producer
▶ Verify code using a trusted typechecker
▶ Link and execute without errors

• Security properties hinge on understanding behavior
▶ Must reason precisely about programs
▶ Define “good” and “bad” behaviors
▶ Identify and rule out “bad programs”

• Typed Assembly Language (TAL) is a framework that
accomplishes these goals in a setting where the programs in
question are x86 executables

2

Schedule

Today
• Typed Assembly Language

Monday
• Polymorphism
• Stack Types

Friday
• Compilation

3

Acknowledgments

• These lectures developed by
David Walker (Princeton)

• They describe Typed
Assembly Language, a project
at Cornell led by Greg
Morrisett about 15 years ago

• Paper: G. Morrisett, D. Walker,
K. Crary, and N. Glew. “From
System F to Typed Assembly
Language.” In ACM TOPLAS.
21(3):527–568. May 1999.

From System F to Typed Assembly Language∗

Greg Morrisett David Walker Karl Crary Neal Glew

Cornell University

Abstract

We motivate the design of a statically typed assembly
language (TAL) and present a type-preserving transla-
tion from System F to TAL. The TAL we present is
based on a conventional RISC assembly language, but
its static type system provides support for enforcing
high-level language abstractions, such as closures, tu-
ples, and objects, as well as user-defined abstract data
types. The type system ensures that well-typed pro-
grams cannot violate these abstractions. In addition,
the typing constructs place almost no restrictions on
low-level optimizations such as register allocation, in-
struction selection, or instruction scheduling.

Our translation to TAL is specified as a sequence of
type-preserving transformations, including CPS and
closure conversion phases; type-correct source programs
are mapped to type-correct assembly language. A key
contribution is an approach to polymorphic closure con-
version that is considerably simpler than previous work.
The compiler and typed assembly language provide a
fully automatic way to produce proof carrying code, suit-
able for use in systems where untrusted and potentially
malicious code must be checked for safety before execu-
tion.

∗This material is based on work supported in part by the
AFOSR grant F49620-97-1-0013, ARPA/RADC grant F30602-
96-1-0317, ARPA/AF grant F30602-95-1-0047, and AASERT
grant N00014-95-1-0985. Any opinions, findings, and conclu-
sions or recommendations expressed in this publication are those
of the authors and do not reflect the views of these agencies.

To appear at the 1998 Symposium on Principles of Program-
ming Languages

1 Introduction and Motivation

Compiling a source language to a statically typed in-
termediate language has compelling advantages over a
conventional untyped compiler. An optimizing com-
piler for a high-level language such as ML may make
as many as 20 passes over a single program, perform-
ing sophisticated analyses and transformations such
as CPS conversion [14, 35, 2, 12, 18], closure conver-
sion [20, 40, 19, 3, 26], unboxing [22, 28, 38], subsump-
tion elimination [9, 11], or region inference [7]. Many
of these optimizations require type information in or-
der to succeed, and even those that do not often ben-
efit from the additional structure supplied by a typ-
ing discipline [22, 18, 28, 37]. Furthermore, the ability
to type-check intermediate code provides an invaluable
tool for debugging new transformations and optimiza-
tions [41, 30].

Today a small number of compilers work with typed in-
termediate languages in order to realize some or all of
these benefits [22, 34, 6, 41, 24, 39, 13]. However, in
all of these compilers, there is a conceptual line where
types are lost. For instance, the TIL/ML compiler pre-
serves type information through approximately 80% of
compilation, but the remaining 20% is untyped.

We show how to eliminate the untyped portions of a
compiler and by so doing, extend the approach of com-
piling with typed intermediate languages to typed tar-
get languages. The target language in this paper is
a strongly typed assembly language (TAL) based on
a generic RISC instruction set. The type system for
the language is surprisingly standard, supporting tuples,
polymorphism, existentials, and a very restricted form
of function pointer, yet it is sufficiently powerful that
we can automatically generate well-typed and efficient
code from high-level ML-like languages. Furthermore,
we claim that the type system does not seriously hin-
der low-level optimizations such as register allocation,
instruction selection, instruction scheduling, and copy
propagation.

TAL not only allows us to reap the benefits of types
throughout a compiler, but it also enables a practical
system for executing untrusted code both safely and

1

4

What is TAL?

In Theory

• A RISC-like assembly language
• A formal operational semantics
• A family of type systems that capture key safety properties of

registers, stack, and the heap
• Rigorous proofs of soundness which demonstrate that TAL

enforces security guarantees

In Practice
• A typechecker for almost all of the Intel IA32 architecture
• A collection of tools for assembling linking, etc. TAL binaries
• A compiler for a safe C-like language called Popcorn

5

What is TAL?

In Theory

• A RISC-like assembly language
• A formal operational semantics
• A family of type systems that capture key safety properties of

registers, stack, and the heap
• Rigorous proofs of soundness which demonstrate that TAL

enforces security guarantees

In Practice
• A typechecker for almost all of the Intel IA32 architecture
• A collection of tools for assembling linking, etc. TAL binaries
• A compiler for a safe C-like language called Popcorn

5

Example

High-level code:

fact (n,a) =
if (n≤ 0) then a
else fact(n-1,a× n)

Assembly code:

% r1 holds n, r2 holds a, r31 holds return address
fact: ble r1,L2 % if n ≤ 0 goto L2

mul r2,r2,r1 % a := a× n
sub r1,r1,1 % n := n - 1
jmp fact % goto fact

L2 : mov r1,r2 % result := a
jmp r31 % return

6

Example

High-level code:

fact (n,a) =
if (n≤ 0) then a
else fact(n-1,a× n)

Assembly code:

% r1 holds n, r2 holds a, r31 holds return address
fact: ble r1,L2 % if n ≤ 0 goto L2

mul r2,r2,r1 % a := a× n
sub r1,r1,1 % n := n - 1
jmp fact % goto fact

L2 : mov r1,r2 % result := a
jmp r31 % return

6

TAL Syntax

Models a simple RISC-like assembly language.

• Registers: r ∈ {r1, r2, r3, . . . }

• Labels: L ∈ Identifier

• Integers: n ∈
[
−2k−1 . . . 2k−1

)
• Blocks: B ::= i; B | jmp v

• Instructions: i ::= aop rd, rs, v | bop r, v | mov r, v

• Operands: v ::= r | L | v

• Arithmetic Operations: aop ::= add | sub | mul | . . .

• Branch Operations: bop ::= beq | bgt | . . .

7

TAL Syntax

Models a simple RISC-like assembly language.

• Registers: r ∈ {r1, r2, r3, . . . }

• Labels: L ∈ Identifier

• Integers: n ∈
[
−2k−1 . . . 2k−1

)
• Blocks: B ::= i; B | jmp v

• Instructions: i ::= aop rd, rs, v | bop r, v | mov r, v

• Operands: v ::= r | L | v

• Arithmetic Operations: aop ::= add | sub | mul | . . .

• Branch Operations: bop ::= beq | bgt | . . .

7

TAL Syntax

Models a simple RISC-like assembly language.

• Registers: r ∈ {r1, r2, r3, . . . }

• Labels: L ∈ Identifier

• Integers: n ∈
[
−2k−1 . . . 2k−1

)

• Blocks: B ::= i; B | jmp v

• Instructions: i ::= aop rd, rs, v | bop r, v | mov r, v

• Operands: v ::= r | L | v

• Arithmetic Operations: aop ::= add | sub | mul | . . .

• Branch Operations: bop ::= beq | bgt | . . .

7

TAL Syntax

Models a simple RISC-like assembly language.

• Registers: r ∈ {r1, r2, r3, . . . }

• Labels: L ∈ Identifier

• Integers: n ∈
[
−2k−1 . . . 2k−1

)
• Blocks: B ::= i; B | jmp v

• Instructions: i ::= aop rd, rs, v | bop r, v | mov r, v

• Operands: v ::= r | L | v

• Arithmetic Operations: aop ::= add | sub | mul | . . .

• Branch Operations: bop ::= beq | bgt | . . .

7

TAL Syntax

Models a simple RISC-like assembly language.

• Registers: r ∈ {r1, r2, r3, . . . }

• Labels: L ∈ Identifier

• Integers: n ∈
[
−2k−1 . . . 2k−1

)
• Blocks: B ::= i; B | jmp v

• Instructions: i ::= aop rd, rs, v | bop r, v | mov r, v

• Operands: v ::= r | L | v

• Arithmetic Operations: aop ::= add | sub | mul | . . .

• Branch Operations: bop ::= beq | bgt | . . .

7

TAL Syntax

Models a simple RISC-like assembly language.

• Registers: r ∈ {r1, r2, r3, . . . }

• Labels: L ∈ Identifier

• Integers: n ∈
[
−2k−1 . . . 2k−1

)
• Blocks: B ::= i; B | jmp v

• Instructions: i ::= aop rd, rs, v | bop r, v | mov r, v

• Operands: v ::= r | L | v

• Arithmetic Operations: aop ::= add | sub | mul | . . .

• Branch Operations: bop ::= beq | bgt | . . .

7

TAL Syntax

Models a simple RISC-like assembly language.

• Registers: r ∈ {r1, r2, r3, . . . }

• Labels: L ∈ Identifier

• Integers: n ∈
[
−2k−1 . . . 2k−1

)
• Blocks: B ::= i; B | jmp v

• Instructions: i ::= aop rd, rs, v | bop r, v | mov r, v

• Operands: v ::= r | L | v

• Arithmetic Operations: aop ::= add | sub | mul | . . .

• Branch Operations: bop ::= beq | bgt | . . .

7

TAL Syntax

Models a simple RISC-like assembly language.

• Registers: r ∈ {r1, r2, r3, . . . }

• Labels: L ∈ Identifier

• Integers: n ∈
[
−2k−1 . . . 2k−1

)
• Blocks: B ::= i; B | jmp v

• Instructions: i ::= aop rd, rs, v | bop r, v | mov r, v

• Operands: v ::= r | L | v

• Arithmetic Operations: aop ::= add | sub | mul | . . .

• Branch Operations: bop ::= beq | bgt | . . .

7

TAL Abstract Machine

Model evaluation using a transition function Σ 7→ Σ′ from
machine states to machine states

• Machine states: Σ = (H, R, B)

• The heap H is a partial map from labels L to blocks B

• The register file Rmaps registers to values. Abusing notation
slightly, we extend R to a map on values as follows:

R(n) = n
R(L) = L
R(r) = v if R = {. . . , r 7→ v, . . . }

• The current block B is the block associated to the (implicit)
program counter

8

TAL Abstract Machine

Model evaluation using a transition function Σ 7→ Σ′ from
machine states to machine states

• Machine states: Σ = (H, R, B)

• The heap H is a partial map from labels L to blocks B

• The register file Rmaps registers to values. Abusing notation
slightly, we extend R to a map on values as follows:

R(n) = n
R(L) = L
R(r) = v if R = {. . . , r 7→ v, . . . }

• The current block B is the block associated to the (implicit)
program counter

8

TAL Abstract Machine

Model evaluation using a transition function Σ 7→ Σ′ from
machine states to machine states

• Machine states: Σ = (H, R, B)

• The heap H is a partial map from labels L to blocks B

• The register file Rmaps registers to values. Abusing notation
slightly, we extend R to a map on values as follows:

R(n) = n
R(L) = L
R(r) = v if R = {. . . , r 7→ v, . . . }

• The current block B is the block associated to the (implicit)
program counter

8

TAL Abstract Machine

Model evaluation using a transition function Σ 7→ Σ′ from
machine states to machine states

• Machine states: Σ = (H, R, B)

• The heap H is a partial map from labels L to blocks B

• The register file Rmaps registers to values. Abusing notation
slightly, we extend R to a map on values as follows:

R(n) = n
R(L) = L
R(r) = v if R = {. . . , r 7→ v, . . . }

• The current block B is the block associated to the (implicit)
program counter

8

TAL Abstract Machine

Model evaluation using a transition function Σ 7→ Σ′ from
machine states to machine states

• Machine states: Σ = (H, R, B)

• The heap H is a partial map from labels L to blocks B

• The register file Rmaps registers to values. Abusing notation
slightly, we extend R to a map on values as follows:

R(n) = n
R(L) = L
R(r) = v if R = {. . . , r 7→ v, . . . }

• The current block B is the block associated to the (implicit)
program counter

8

TAL Operational Semantics (Selected Rules)

(H, R,mov rd, v; B) 7→ (H, R[rd := R(v)], B)

n = R(v) + R(rs)

(H, R, add rd, rs, v; B) 7→ (H, R[rd := n], B)

R(v) = L H(L) = B

(H, R, jmp v) 7→ (H, R, B)

R(r) ̸= 0

(H, R, beq r, v; B) 7→ (H, R, B)

R(r) = 0 R(v) = L H(L) = B′

(H, R, beq r, v; B) 7→ (H, R, B′)

9

TAL Operational Semantics (Selected Rules)

(H, R,mov rd, v; B) 7→ (H, R[rd := R(v)], B)

n = R(v) + R(rs)

(H, R, add rd, rs, v; B) 7→ (H, R[rd := n], B)

R(v) = L H(L) = B

(H, R, jmp v) 7→ (H, R, B)

R(r) ̸= 0

(H, R, beq r, v; B) 7→ (H, R, B)

R(r) = 0 R(v) = L H(L) = B′

(H, R, beq r, v; B) 7→ (H, R, B′)

9

TAL Operational Semantics (Selected Rules)

(H, R,mov rd, v; B) 7→ (H, R[rd := R(v)], B)

n = R(v) + R(rs)

(H, R, add rd, rs, v; B) 7→ (H, R[rd := n], B)

R(v) = L H(L) = B

(H, R, jmp v) 7→ (H, R, B)

R(r) ̸= 0

(H, R, beq r, v; B) 7→ (H, R, B)

R(r) = 0 R(v) = L H(L) = B′

(H, R, beq r, v; B) 7→ (H, R, B′)

9

TAL Operational Semantics (Selected Rules)

(H, R,mov rd, v; B) 7→ (H, R[rd := R(v)], B)

n = R(v) + R(rs)

(H, R, add rd, rs, v; B) 7→ (H, R[rd := n], B)

R(v) = L H(L) = B

(H, R, jmp v) 7→ (H, R, B)

R(r) ̸= 0

(H, R, beq r, v; B) 7→ (H, R, B)

R(r) = 0 R(v) = L H(L) = B′

(H, R, beq r, v; B) 7→ (H, R, B′)

9

TAL Operational Semantics (Selected Rules)

(H, R,mov rd, v; B) 7→ (H, R[rd := R(v)], B)

n = R(v) + R(rs)

(H, R, add rd, rs, v; B) 7→ (H, R[rd := n], B)

R(v) = L H(L) = B

(H, R, jmp v) 7→ (H, R, B)

R(r) ̸= 0

(H, R, beq r, v; B) 7→ (H, R, B)

R(r) = 0 R(v) = L H(L) = B′

(H, R, beq r, v; B) 7→ (H, R, B′)

9

Errors

• The machine is stuck if there does not exist a transition from the
current state to some following state

• We will use stuck states to define the “bad” behaviors that may
occur at run-time

• The type system will guarantee that well-typed machines never
get stuck

• Example stuck states:
▶ (H, R, add rd, rs, v; B) where rs and v aren’t integers
▶ (H, R, jmp v) where v isn’t a label
▶ (H, R, beq r, v) where r isn’t an integer or v isn’t a label

• To distinguish integers and labels we need a type system!

10

Types

Syntax

• τ ::= int | Γ → {}
• Γ ::= {r1 : τ1, r2 : τ2, . . . }

Code Types
• Labels are like functions that take a record of arguments

• Labels have types of the form {r1 : τ1, r2 : τ2, . . . } → {}

• To jump to code with this type, register r1 must contain a value
of type τ1, register r2 must contain a value of type τ2, and so on

• The order that register names appear is irrelevant

• Note that functions never return—every block ends with a jmp

11

Types

Syntax

• τ ::= int | Γ → {}
• Γ ::= {r1 : τ1, r2 : τ2, . . . }

Code Types
• Labels are like functions that take a record of arguments

• Labels have types of the form {r1 : τ1, r2 : τ2, . . . } → {}

• To jump to code with this type, register r1 must contain a value
of type τ1, register r2 must contain a value of type τ2, and so on

• The order that register names appear is irrelevant

• Note that functions never return—every block ends with a jmp

11

Well-Typed Example

% r1 holds n, r2 holds a, r31 holds return address

fact: {r1 : int, r2 : int, r31 : {r1 : int} → {}} → {}
ble r1,L2 % if n ≤ 0 goto L2
mul r2,r2,r1 % a := a× n
sub r1,r1,1 % n := n - 1
jmp fact % goto fact

L2 : {r1 : int, r2 : int, r31 : {r1 : int} → {}} → {}
mov r1,r2 % result := a
jmp r31 % return

12

Ill-Typed Example

% r1 holds n, r2 holds a, r31 holds return address

fact: {r1 : int, r31 : {r1 : int} → {}} → {}
ble r1,L2
mul r2,r2,r1 % Error! r2 doesn’t have a type
sub r1,r1,1
jmp L1 % Error! No such label

L2 : {r2 : int, r31 : {r1 : int} → {}} → {}
mov r31,r2
jmp r31 % Error! r31 not a label

13

Typechecking Overview

• Intuitively, the type system needs to keep track of:
▶ The types of the registers at each point in the code
▶ The types of the labels on the code

• Heap types: Ψmaps labels to code types

• Register types: Γmaps registers to types

• A family of typing (and subtyping) relations:
▶ Ψ; Γ ⊢ v : τ
▶ Ψ ⊢ i : Γ → Γ′

▶ τ ≤ τ ′

▶ ⊢ H : Ψ
▶ ⊢ R : Γ
▶ ⊢ (H, R, B)

14

Typechecking Values

Ψ; Γ ⊢ v : τ

Ψ; Γ ⊢ n : int

Γ(r) = τ

Ψ; Γ ⊢ r : τ

Ψ(L) = τ

Ψ; Γ ⊢ L : τ

15

Typechecking Values

Ψ; Γ ⊢ v : τ

Ψ; Γ ⊢ n : int

Γ(r) = τ

Ψ; Γ ⊢ r : τ

Ψ(L) = τ

Ψ; Γ ⊢ L : τ

15

Typechecking Values

Ψ; Γ ⊢ v : τ

Ψ; Γ ⊢ n : int

Γ(r) = τ

Ψ; Γ ⊢ r : τ

Ψ(L) = τ

Ψ; Γ ⊢ L : τ

15

Typechecking Values

Ψ; Γ ⊢ v : τ

Ψ; Γ ⊢ n : int

Γ(r) = τ

Ψ; Γ ⊢ r : τ

Ψ(L) = τ

Ψ; Γ ⊢ L : τ

15

Subtyping

• A program won’t crash if the register file has more values that
are needed to satisfy the typing conditions

• Formally, a register file with more components is a subtype of a
register file with fewer components:

{r1 : τ1, . . . , ri : τi; ri+1 : τ i+ 1} ≤ {r1 : τ1, . . . , ri : τi}
Note that this is the ordinary rule for records!

• Code subtyping goes in the opposite direction: a label requiring
r1 and r2 may be used as a label requiring r1, r2, and r3.

Γ′ ≤ Γ

Γ → {} ≤ Γ′ → {}
Note that this is the ordinary contravariant rule for functions!

16

Subtyping

• Subtyping is also reflexive and transitive.

τ ≤ τ

τ1 ≤ τ2 τ2 ≤ τ3

τ1 ≤ τ3

• A subsumption rule allows values to be used at supertypes:

Ψ; Γ ⊢ v : τ1 τ1 ≤ τ2

Ψ; Γ ⊢ v : τ2

17

Typing Instructions

Ψ ⊢ i : Γ1 → Γ2

• Γ1 describes the registers before the execution of the
instruction—a precondition

• Γ2 describes the registers after the execution of the
instruction—a postcondition

• Ψ is invariant. That is, the types of objects on the heap will not
change (at least for now...)

18

Typing Instructions

Ψ ⊢ i : Γ1 → Γ2

Arithmetic operations

Ψ; Γ ⊢ rs : int Ψ; Γ ⊢ v : int

Ψ ⊢ aop rd, rs, v : Γ → Γ[rd := int]

Conditional branches

Ψ; Γ ⊢ r : int Ψ; Γ ⊢ v : Γ → {}
Ψ ⊢ bop r, v : Γ → Γ

Data movement

Ψ; Γ ⊢ v : τ

Ψ ⊢ mov rd, v : Γ → Γ[rd := τ]

19

Typing Instructions

Ψ ⊢ i : Γ1 → Γ2

Jumps

Ψ; Γ ⊢ v : Γ → {}
Ψ ⊢ jmp v : Γ → {}

Basic blocks

Ψ; Γ ⊢ i : Γ1 → Γ2 Ψ; Γ ⊢ B : Γ2 → {}
Ψ ⊢ i; B : Γ1 → {}

20

Heap, Register File, and Machine Typing

Heaps

dom(H) = dom(Ψ) ∀L ∈ dom(H).Ψ ⊢ H(L) : Ψ(L)

⊢ H : Ψ

Register Files

∀r ∈ dom(Γ).Ψ; {} ⊢ R(r) : Γ(r)

Ψ ⊢ R : Γ

Machines

⊢ H : Ψ Ψ ⊢ R : Γ Ψ ⊢ B : Γ → {}
⊢ (H, R, B)

21

Type Safety

The type system satisfies the following theorem:

Theorem (Type Safety)

If ⊢ Σ and Σ 7→⋆ Σ′ , then Σ′ is not stuck.

Proof:
• Progress: if a state is well-typed, then it is not stuck
• Preservation: evaluation preserves types

Corollary

• Every jump in a well-typed program is to a valid label
• Every arithmetic operation in a well-typed program is done with
integers—not labels!

22

Type Safety

The type system satisfies the following theorem:

Theorem (Type Safety)

If ⊢ Σ and Σ 7→⋆ Σ′ , then Σ′ is not stuck.

Proof:
• Progress: if a state is well-typed, then it is not stuck
• Preservation: evaluation preserves types

Corollary

• Every jump in a well-typed program is to a valid label
• Every arithmetic operation in a well-typed program is done with
integers—not labels!

22

Type Safety

The type system satisfies the following theorem:

Theorem (Type Safety)

If ⊢ Σ and Σ 7→⋆ Σ′ , then Σ′ is not stuck.

Proof:
• Progress: if a state is well-typed, then it is not stuck
• Preservation: evaluation preserves types

Corollary

• Every jump in a well-typed program is to a valid label
• Every arithmetic operation in a well-typed program is done with
integers—not labels!

22

Canonical Forms

Lemma
If ⊢ H : Ψ and Ψ ⊢ R : Γ and Ψ; Γ ⊢ v : τ then

• τ = int implies R(v) = n

• τ = {r1 : τ1, . . . , rk : τk} → {} implies R(v) = L.

Moreover H(L) = B and Ψ ⊢ B : {r1 : τ1, . . . , rk : τk} → {}

Proof: by induction on typing derivations...

23

Progress (jmp Case)

Lemma
If ⊢ Σ1 then there exists a Σ2 such that Σ1 7→ Σ2

⊢ H : Ψ Ψ ⊢ R : Γ Ψ ⊢ jmp v : Γ → {}
⊢ (H, R, jmp v)

The third premise must be a derivation that ends in the rule:

Ψ; Γ ⊢ v : Γ

Ψ ⊢ jmp v : Γ → {}

By Canonical Forms, we have R(v) = L and H(L) = B′. Therefore:

R(v) = L H(L) = B′

(H, R, jmp v) 7→ (H, R, B′)

24

Progress (jmp Case)

Lemma
If ⊢ Σ1 then there exists a Σ2 such that Σ1 7→ Σ2

⊢ H : Ψ Ψ ⊢ R : Γ Ψ ⊢ jmp v : Γ → {}
⊢ (H, R, jmp v)

The third premise must be a derivation that ends in the rule:

Ψ; Γ ⊢ v : Γ

Ψ ⊢ jmp v : Γ → {}

By Canonical Forms, we have R(v) = L and H(L) = B′. Therefore:

R(v) = L H(L) = B′

(H, R, jmp v) 7→ (H, R, B′)

24

Progress (jmp Case)

Lemma
If ⊢ Σ1 then there exists a Σ2 such that Σ1 7→ Σ2

⊢ H : Ψ Ψ ⊢ R : Γ Ψ ⊢ jmp v : Γ → {}
⊢ (H, R, jmp v)

The third premise must be a derivation that ends in the rule:

Ψ; Γ ⊢ v : Γ

Ψ ⊢ jmp v : Γ → {}

By Canonical Forms, we have R(v) = L and H(L) = B′.

Therefore:

R(v) = L H(L) = B′

(H, R, jmp v) 7→ (H, R, B′)

24

Progress (jmp Case)

Lemma
If ⊢ Σ1 then there exists a Σ2 such that Σ1 7→ Σ2

⊢ H : Ψ Ψ ⊢ R : Γ Ψ ⊢ jmp v : Γ → {}
⊢ (H, R, jmp v)

The third premise must be a derivation that ends in the rule:

Ψ; Γ ⊢ v : Γ

Ψ ⊢ jmp v : Γ → {}

By Canonical Forms, we have R(v) = L and H(L) = B′. Therefore:

R(v) = L H(L) = B′

(H, R, jmp v) 7→ (H, R, B′)

24

Preservation (jmp Case)

Lemma
If ⊢ Σ1 and Σ1 7→ Σ2 then ⊢ Σ2

⊢ H : Ψ Ψ ⊢ R : Γ Ψ ⊢ jmp v : Γ → {}
⊢ (H, R, jmp v)

The third premise must be a derivation that ends in the rule:

Ψ; Γ ⊢ v : Γ

Ψ ⊢ jmp v : Γ → {}

Moreover, the operational rule must be

R(v) = L H(L) = B′

(H, R, jmp v) 7→ (H, R, B′)

25

Preservation (jmp Case)

Lemma
If ⊢ Σ1 and Σ1 7→ Σ2 then ⊢ Σ2

⊢ H : Ψ Ψ ⊢ R : Γ Ψ ⊢ jmp v : Γ → {}
⊢ (H, R, jmp v)

The third premise must be a derivation that ends in the rule:

Ψ; Γ ⊢ v : Γ

Ψ ⊢ jmp v : Γ → {}

Moreover, the operational rule must be

R(v) = L H(L) = B′

(H, R, jmp v) 7→ (H, R, B′)

25

Preservation (jmp Case)

Lemma
If ⊢ Σ1 and Σ1 7→ Σ2 then ⊢ Σ2

⊢ H : Ψ Ψ ⊢ R : Γ Ψ ⊢ jmp v : Γ → {}
⊢ (H, R, jmp v)

The third premise must be a derivation that ends in the rule:

Ψ; Γ ⊢ v : Γ

Ψ ⊢ jmp v : Γ → {}

Moreover, the operational rule must be

R(v) = L H(L) = B′

(H, R, jmp v) 7→ (H, R, B′)

25

Preservation (jmp Case)

Lemma
If ⊢ Σ1 and Σ1 7→ Σ2 then ⊢ Σ2

By Canonical Forms, we haveΨ ⊢ B : Γ → {}

Therefore:

⊢ H : Ψ Ψ ⊢ R : Γ Ψ ⊢ B : Γ → {}
⊢ (H, R, B)

26

Preservation (jmp Case)

Lemma
If ⊢ Σ1 and Σ1 7→ Σ2 then ⊢ Σ2

By Canonical Forms, we haveΨ ⊢ B : Γ → {}

Therefore:

⊢ H : Ψ Ψ ⊢ R : Γ Ψ ⊢ B : Γ → {}
⊢ (H, R, B)

26

