CS4110

Programming Languages & Logics

Lecture 33
Typed Assembly Language

21 November 2014

Overview

Slogan: “Safety through types”

Overview

Slogan: “Safety through types”

e An architecture for safe mobile code

» Download annotated binaries from an untrusted code producer
» Verify code using a trusted typechecker
» Link and execute without errors

Overview

Slogan: “Safety through types”

e An architecture for safe mobile code

» Download annotated binaries from an untrusted code producer
» Verify code using a trusted typechecker
» Link and execute without errors

e Security properties hinge on understanding behavior
» Must reason precisely about programs
» Define "good” and “bad” behaviors
» |dentify and rule out “bad programs”

Overview

Slogan: “Safety through types”

e An architecture for safe mobile code

» Download annotated binaries from an untrusted code producer
» Verify code using a trusted typechecker
» Link and execute without errors

e Security properties hinge on understanding behavior
» Must reason precisely about programs
» Define "good” and “bad” behaviors
» |dentify and rule out “bad programs”

e Typed Assembly Language (TAL) is a framework that
accomplishes these goals in a setting where the programs in
question are x86 executables

Schedule

Today
* Typed Assembly Language

Monday
e Polymorphism
e Stack Types

Friday
e Compilation

w

Acknowledgments

e These lectures developed by ‘
David Walker (Princeton)

ystem F to Typed Assembly Language”

ary Neal Glew

e They describe Typed
Assembly Language, a project
at Cornell led by Greg
Morrisett about 15 years ago

e Paper: G. Morrisett, D. Walker,
K. Crary, and N. Glew. “From
System F to Typed Assembly
Language!” In ACM TOPLAS.
21(3):527-568. May 1999.

What is TAL?

In Theory

e ARISC-like assembly language
e Aformal operational semantics

e Afamily of type systems that capture key safety properties of
registers, stack, and the heap

e Rigorous proofs of soundness which demonstrate that TAL
enforces security guarantees

What is TAL?

In Theory
e ARISC-like assembly language

A formal operational semantics

A family of type systems that capture key safety properties of
registers, stack, and the heap

Rigorous proofs of soundness which demonstrate that TAL
enforces security guarantees

In Practice

A typechecker for almost all of the Intel IA32 architecture
A collection of tools for assembling linking, etc. TAL binaries

A compiler for a safe C-like language called Popcorn

Example

High-level code:

fact (n,a) =
if (n<0)thena
else fact(n-1,a x n)

Example

High-level code:

fact (n,a) =
if (n<0)thena
else fact(n-1,a x n)

Assembly code:

% r; holds n, r; holds a, r3; holds return address

fact: bler 2 %ifn <0gotol2
mul 15,0, %a=axn
sub ry,n,1 %n=n-1
jmp fact % goto fact

L2 movrn,hn % result :=a

jmp r3 % return

TAL Syntax

Models a simple RISC-like assembly language.

e Registers:r € {ry,rp,r3,...}

TAL Syntax

Models a simple RISC-like assembly language.

e Registers:r € {ry,rp,r3,...}

e |abels: L € [dentifier

TAL Syntax

Models a simple RISC-like assembly language.

e Registers:r € {ry,rp,r3,...}
e Labels: L € Identifier

o Integers: n € [—2¢71.. . 2F7T)

TAL Syntax

Models a simple RISC-like assembly language.

e Registers:r € {ry,rp,r3,...}
e labels: L € Identifier
o Integers: n € [—2¢71.. . 2F7T)

e Blocks: B::=1i; B|jmpv

TAL Syntax

Models a simple RISC-like assembly language.

e Registers:r € {ry,rp,r3,...}

Labels: L € Identifier

Integers: n € [—25"...2¢71)

Blocks: B::=1i; B | jmpv

Instructions: j ::=aop ry, rs,v | bop r,v | movr,v

TAL Syntax

Models a simple RISC-like assembly language.

e Registers:r € {ry,rp,r3,...}

Labels: L € Identifier

Integers: n € [—25"...2¢71)

Blocks: B::=1i; B | jmpv

Instructions: j ::=aop ry, rs,v | bop r,v | movr,v

Operands: vi=r|L]|v

TAL Syntax

Models a simple RISC-like assembly language.

e Registers:r € {ry,rp,r3,...}

Labels: L € Identifier

Integers: n € [—25"...2¢71)

Blocks: B::=1i; B | jmpv

Instructions: j ::=aop ry, rs,v | bop r,v | movr,v

Operands: vi=r|L]|v

Arithmetic Operations: aop ::=add | sub | mul | ...

TAL Syntax

Models a simple RISC-like assembly language.

e Registers:r € {ry,rp,r3,...}

Labels: L € Identifier

Integers: n € [—25"...2¢71)

Blocks: B::=1i; B | jmpv

Instructions: j ::=aop ry, rs,v | bop r,v | movr,v

Operands: vi=r|L]|v

Branch Operations: bop ::=beq | bat | ...

Arithmetic Operations: aop ::=add | sub | mul | ...

TAL Abstract Machine

Model evaluation using a transition function & — ¥’ from
machine states to machine states

TAL Abstract Machine

Model evaluation using a transition function & — ¥’ from
machine states to machine states

e Machine states: ¥ = (H, R, B)

TAL Abstract Machine

Model evaluation using a transition function & — ¥’ from
machine states to machine states

e Machine states: ¥ = (H, R, B)
® The heap H s a partial map from labels L to blocks B

TAL Abstract Machine

Model evaluation using a transition function & — ¥’ from
machine states to machine states

e Machine states: ¥ = (H, R, B)
® The heap H s a partial map from labels L to blocks B

e The register file R maps registers to values. Abusing notation
slightly, we extend R to a map on values as follows:

R(n) = n
R(L) = L
R(r) = v ifR={....,r—v,...}

TAL Abstract Machine

Model evaluation using a transition function & — ¥’ from
machine states to machine states

e Machine states: ¥ = (H, R, B)
® The heap H s a partial map from labels L to blocks B

e The register file R maps registers to values. Abusing notation
slightly, we extend R to a map on values as follows:

R(n) = n
R(L) = L
R(r) = v ifR={....,r—v,...}

e The current block B is the block associated to the (implicit)
program counter

TAL Operational Semantics (Selected Rules)

(H, R,mov rg,v; B) — (H,R[rs := R(v)], B)

TAL Operational Semantics (Selected Rules)

(H, R,mov rg,v; B) — (H,R[rs := R(v)], B)

n = R(v) + R(r,)
(H,R,add rg, r5,v; B) — (H,R[rs :=n], B)

TAL Operational Semantics (Selected Rules)

(H,R,mov ry,v; B) — (H,R[rq :=R(v)], B)

n=R(v)

+ R(r,)
(H,R,add rg, r5,v; B) —

R(v) =1L H(L) =
(H,R,jmp v) — (H, R,)

TAL Operational Semantics (Selected Rules)

(H,R,mov ry,v; B) — (H,R[rq :=R(v)], B)

n=R(v)+
(H,R,add rg, r5,v; B) —

RV =L H()=8
(H,R,jmp v) = (H, R, B)

R(r)#0
(H,R,beqr,v; B) — (H,R,B)

TAL Operational Semantics (Selected Rules)

(H,R,mov ry,v; B) — (H,R[rq :=R(v)], B)

n=R(v)+
(H,R,add rg, r5,v; B) —

RV =L H()=8
(H,R,jmp v) = (H, R, B)

R(r)#0
(H,R,beqr,v; B) — (H,R,B)

R(r)=0 R(v) =L H(L) =8
(H,R,beqr,v; B) — (H,R,B)

Errors

e The machine is stuck if there does not exist a transition from the
current state to some following state

e We will use stuck states to define the “bad” behaviors that may
occur at run-time

e The type system will guarantee that well-typed machines never
get stuck

e Example stuck states:

» (H,R,add rg,rs,v; B) where r; and v aren't integers
» (H,R,jmp v) where visn't a label
» (H,R,beqr,v) where risn‘taninteger or visn't a label

e Todistinguish integers and labels we need a type system!

Types

Syntax

e Tu=int| [— {}

e Mu={r:m,n:mn,.

)

Types

Syntax
e Tu=int| [— {}

L r:::{f] :T1,/'2:Tz,...}

Code Types
e Labels are like functions that take a record of arguments

Labels have types of the form {r; : 7, : 1o, ... } = {}

To jump to code with this type, register r; must contain a value
of type 7y, register r, must contain a value of type 7, and so on

The order that register names appear is irrelevant

Note that functions never return—every block ends with a jmp

Well-Typed Example

% ry holds n, r; holds a, r3; holds return address

fact: {n :int,r cint,r3y : {r cint} = {}} = {}

ble r,L2 %ifn <0gotol2
mul 15,5, %a:=axn
sub ry,n,1 %n=n-1
jmp fact % goto fact
L2: {n:intrint s {n :int} = {}} = {}
mov 11,6, % result :=a

jmp r3 % return

Il-Typed Example

% r; holds n, r; holds a, r3; holds return address

fact: {r :int,ry = {r sint} = {}} = {}

ble ry,L2
mul 5,05, % Error! r, doesn't have a type
sub ry,n,1
jmp L1 % Error! No such label
L2: Arn:intrs:{rn:int} = {}} = {}
MoV I3y,

jmp r3; % Error! r3; not a label

12
b

Typechecking Overview

e Intuitively, the type system needs to keep track of:

» The types of the registers at each point in the code
» The types of the labels on the code

e Heap types: W maps labels to code types
e Register types: ' maps registers to types

e Afamily of typing (and subtyping) relations:
Vv

Wil =T

<7

FH: W

FR:T

F (H,R,B)

vV V. vV vV VvV Y

Typechecking Values

Typechecking Values

Typechecking Values

F(r):T
V:lkEr:T

Typechecking Values

V:Tn:int
F(r):T
V:lkEr:T

Subtyping

e A program won't crash if the register file has more values that
are needed to satisfy the typing conditions

e Formally, a register file with more components is a subtype of a
register file with fewer components:

{ﬁ B I T :Tf+1}§{f1 27'1,...71’,‘:7','}
Note that this is the ordinary rule for records!

e Code subtyping goes in the opposite direction: a label requiring
ri and r, may be used as a label requiring ry, r;, and rs.

r<r
r-{}<r—-{}

Note that this is the ordinary contravariant rule for functions!

Subtyping

e Subtyping is also reflexive and transitive.

e A subsumption rule allows values to be used at supertypes:

V:Tv:m <7
V:fFv:n

Typing Instructions

(Wil =T

e [, describes the registers before the execution of the
instruction—a precondition

e [, describes the registers after the execution of the
instruction—a postcondition

e Vs invariant. That is, the types of objects on the heap will not
change (at least for now...)

Typing Instructions

Wil — T

Arithmetic operations

V. [Fr:int U: [Fv:int
Vi aopry,re,v:T — Trg:=int]

Conditional branches
V:TFr:int V.r-v: T —{}
VEbopr,v:T —T

Data movement
V:l+v:T
VEmovrgv:l —Trg:=71]

19

Typing Instructions

Wil — T
Jumps
V:rkv:I—{}
Vi jmpv:T —{}
Basic blocks

v:r+i:r—=r, v:r=8:1, = {}
Vi, B: T = {}

20

Heap, Register File, and Machine Typing

Heaps

dom(H) = dom(WV) VL € dom(H). W = H(L) : W(L)
FH:W

Register Files

Vre dom(l). W; {} FR(r) : T(r)
VER:T

Machines

FH:W O WERIT WEB:IT—{}
- (H,R, B)

Type Safety

The type system satisfies the following theorem:
Theorem (Type Safety)
If X and ¥ —* X', then ¥’ is not stuck.

22

Type Safety

The type system satisfies the following theorem:

Theorem (Type Safety)

If EX and X —* Y’ then ¥’ isnot stuck.

Proof:

e Progress: if a state is well-typed, then it is not stuck
e Preservation: evaluation preserves types

22

Type Safety

The type system satisfies the following theorem:

Theorem (Type Safety)

If EX and X —* Y’ then ¥’ isnot stuck.

Proof:

e Progress: if a state is well-typed, then it is not stuck
e Preservation: evaluation preserves types

Corollary

e FEvery jump in a well-typed program is to a valid label

e Fvery arithmetic operation in a well-typed program is done with
integers—not labels!

)
22

Canonical Forms

Lemma
If FH: Vand VER:T and V:T = v: 7 then

e 7 = int implies R(v) =n

e r={n:m,...,r: 7} — {} implies R(v) = L.
Moreover H(L) =B and W =B : {r :my,...,r: 1}t — {}

Proof: by induction on typing derivations...

Progress (jmp Case)

Lemma

If =X, thenthereexistsa ¥, suchthat X, — X,

FH:W WER:T Whjmpv:l — {}
= (H,R,jmp V)

Progress (jmp Case)

Lemma

If =X, thenthereexistsa ¥, suchthat X, — X,

FH:W WER:T Whjmpv:l — {}
= (H,R,jmp V)

The third premise must be a derivation that ends in the rule:

V.l v: T
Vi jmpv:T —{}

24

Progress (jmp Case)

Lemma

If =X, thenthereexistsa ¥, suchthat X, — X,

FH:W WER:T Whjmpv:l — {}
= (H,R,jmp V)

The third premise must be a derivation that ends in the rule:

V.l v: T
Vi jmpv:T —{}

By Canonical Forms, we have R(v) = Land H(L) = B'.

24

Progress (jmp Case)

Lemma

If =X, thenthereexistsa ¥, suchthat X, — X,

FH:W WER:T Whjmpv:l — {}
= (H,R,jmp V)

The third premise must be a derivation that ends in the rule:

V.l v: T
Vi jmpv:T —{}

By Canonical Forms, we have R(v) = L and H(L) = B'. Therefore:

RV =L H(L) =8
(H,R,jmp V) — (H,R,B)

24

Preservation (jmp Case)

Lemma

If + 21 and Z] — Zz then F 22

FH:W WER:T Whjmpv:l — {}
= (H,R,jmp V)

Preservation (jmp Case)

Lemma

If + 21 and Z] — Zz then F 22

FH:W WER:T Whjmpv:l — {}
= (H,R,jmp V)

The third premise must be a derivation that ends in the rule:

V:v:T
VEjmpv:T —{}

Preservation (jmp Case)

Lemma

If + 21 and Z] — Zz then F 22

FH:W WER:T Whjmpv:l — {}
= (H,R,jmp V)

The third premise must be a derivation that ends in the rule:
V:v:T
VEjmpv:T —{}
Moreover, the operational rule must be
R(v) =1L H(L) =8
(H,R,jmp V) — (H,R,B')

Preservation (jmp Case)

Lemma

If + 21 and Z] — Zz then F 22

By Canonical Forms, we have W B : T — {}

Preservation (jmp Case)

Lemma

If + 21 and Z] — Zz then F 22
By Canonical Forms, we have W B : T — {}

Therefore:

FH:W WER:T WEB:T—{}
- (H,R,B)

