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Overview

Slogan: “Safety through types”

• An architecture for safe mobile code
▶ Download annotated binaries from an untrusted code producer
▶ Verify code using a trusted typechecker
▶ Link and execute without errors

• Security properties hinge on understanding behavior
▶ Must reason precisely about programs
▶ Define “good” and “bad” behaviors
▶ Identify and rule out “bad programs”

• Typed Assembly Language (TAL) is a framework that
accomplishes these goals in a setting where the programs in
question are x86 executables
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Schedule

Today
• Typed Assembly Language

Monday
• Polymorphism
• Stack Types

Friday
• Compilation
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Abstract

We motivate the design of a statically typed assembly
language (TAL) and present a type-preserving transla-
tion from System F to TAL. The TAL we present is
based on a conventional RISC assembly language, but
its static type system provides support for enforcing
high-level language abstractions, such as closures, tu-
ples, and objects, as well as user-defined abstract data
types. The type system ensures that well-typed pro-
grams cannot violate these abstractions. In addition,
the typing constructs place almost no restrictions on
low-level optimizations such as register allocation, in-
struction selection, or instruction scheduling.

Our translation to TAL is specified as a sequence of
type-preserving transformations, including CPS and
closure conversion phases; type-correct source programs
are mapped to type-correct assembly language. A key
contribution is an approach to polymorphic closure con-
version that is considerably simpler than previous work.
The compiler and typed assembly language provide a
fully automatic way to produce proof carrying code, suit-
able for use in systems where untrusted and potentially
malicious code must be checked for safety before execu-
tion.

∗This material is based on work supported in part by the
AFOSR grant F49620-97-1-0013, ARPA/RADC grant F30602-
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of the authors and do not reflect the views of these agencies.
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ming Languages

1 Introduction and Motivation

Compiling a source language to a statically typed in-
termediate language has compelling advantages over a
conventional untyped compiler. An optimizing com-
piler for a high-level language such as ML may make
as many as 20 passes over a single program, perform-
ing sophisticated analyses and transformations such
as CPS conversion [14, 35, 2, 12, 18], closure conver-
sion [20, 40, 19, 3, 26], unboxing [22, 28, 38], subsump-
tion elimination [9, 11], or region inference [7]. Many
of these optimizations require type information in or-
der to succeed, and even those that do not often ben-
efit from the additional structure supplied by a typ-
ing discipline [22, 18, 28, 37]. Furthermore, the ability
to type-check intermediate code provides an invaluable
tool for debugging new transformations and optimiza-
tions [41, 30].

Today a small number of compilers work with typed in-
termediate languages in order to realize some or all of
these benefits [22, 34, 6, 41, 24, 39, 13]. However, in
all of these compilers, there is a conceptual line where
types are lost. For instance, the TIL/ML compiler pre-
serves type information through approximately 80% of
compilation, but the remaining 20% is untyped.

We show how to eliminate the untyped portions of a
compiler and by so doing, extend the approach of com-
piling with typed intermediate languages to typed tar-
get languages. The target language in this paper is
a strongly typed assembly language (TAL) based on
a generic RISC instruction set. The type system for
the language is surprisingly standard, supporting tuples,
polymorphism, existentials, and a very restricted form
of function pointer, yet it is sufficiently powerful that
we can automatically generate well-typed and efficient
code from high-level ML-like languages. Furthermore,
we claim that the type system does not seriously hin-
der low-level optimizations such as register allocation,
instruction selection, instruction scheduling, and copy
propagation.

TAL not only allows us to reap the benefits of types
throughout a compiler, but it also enables a practical
system for executing untrusted code both safely and
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What is TAL?

In Theory

• A RISC-like assembly language
• A formal operational semantics
• A family of type systems that capture key safety properties of

registers, stack, and the heap
• Rigorous proofs of soundness which demonstrate that TAL

enforces security guarantees

In Practice
• A typechecker for almost all of the Intel IA32 architecture
• A collection of tools for assembling linking, etc. TAL binaries
• A compiler for a safe C-like language called Popcorn
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Example

High-level code:

fact (n,a) =
if (n≤ 0) then a
else fact(n-1,a× n)

Assembly code:

% r1 holds n, r2 holds a, r31 holds return address
fact: ble r1,L2 % if n ≤ 0 goto L2

mul r2,r2,r1 % a := a× n
sub r1,r1,1 % n := n - 1
jmp fact % goto fact

L2 : mov r1,r2 % result := a
jmp r31 % return
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TAL Syntax

Models a simple RISC-like assembly language.

• Registers: r ∈ {r1, r2, r3, . . . }

• Labels: L ∈ Identifier

• Integers: n ∈
[
−2k−1 . . . 2k−1

)
• Blocks: B ::= i; B | jmp v

• Instructions: i ::= aop rd, rs, v | bop r, v | mov r, v

• Operands: v ::= r | L | v

• Arithmetic Operations: aop ::= add | sub | mul | . . .

• Branch Operations: bop ::= beq | bgt | . . .
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TAL Abstract Machine

Model evaluation using a transition function Σ 7→ Σ′ from
machine states to machine states

• Machine states: Σ = (H, R, B)

• The heap H is a partial map from labels L to blocks B

• The register file Rmaps registers to values. Abusing notation
slightly, we extend R to a map on values as follows:

R(n) = n
R(L) = L
R(r) = v if R = {. . . , r 7→ v, . . . }

• The current block B is the block associated to the (implicit)
program counter
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TAL Operational Semantics (Selected Rules)

(H, R,mov rd, v; B) 7→ (H, R[rd := R(v)], B)

n = R(v) + R(rs)

(H, R, add rd, rs, v; B) 7→ (H, R[rd := n], B)

R(v) = L H(L) = B

(H, R, jmp v) 7→ (H, R, B)

R(r) ̸= 0

(H, R, beq r, v; B) 7→ (H, R, B)

R(r) = 0 R(v) = L H(L) = B′

(H, R, beq r, v; B) 7→ (H, R, B′)

9
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Errors

• The machine is stuck if there does not exist a transition from the
current state to some following state

• We will use stuck states to define the “bad” behaviors that may
occur at run-time

• The type system will guarantee that well-typed machines never
get stuck

• Example stuck states:
▶ (H, R, add rd, rs, v; B) where rs and v aren’t integers
▶ (H, R, jmp v) where v isn’t a label
▶ (H, R, beq r, v) where r isn’t an integer or v isn’t a label

• To distinguish integers and labels we need a type system!

10



Types

Syntax

• τ ::= int | Γ → {}
• Γ ::= {r1 : τ1, r2 : τ2, . . . }

Code Types
• Labels are like functions that take a record of arguments

• Labels have types of the form {r1 : τ1, r2 : τ2, . . . } → {}

• To jump to code with this type, register r1 must contain a value
of type τ1, register r2 must contain a value of type τ2, and so on

• The order that register names appear is irrelevant

• Note that functions never return—every block ends with a jmp

11
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Well-Typed Example

% r1 holds n, r2 holds a, r31 holds return address

fact: {r1 : int, r2 : int, r31 : {r1 : int} → {}} → {}
ble r1,L2 % if n ≤ 0 goto L2
mul r2,r2,r1 % a := a× n
sub r1,r1,1 % n := n - 1
jmp fact % goto fact

L2 : {r1 : int, r2 : int, r31 : {r1 : int} → {}} → {}
mov r1,r2 % result := a
jmp r31 % return
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Ill-Typed Example

% r1 holds n, r2 holds a, r31 holds return address

fact: {r1 : int, r31 : {r1 : int} → {}} → {}
ble r1,L2
mul r2,r2,r1 % Error! r2 doesn’t have a type
sub r1,r1,1
jmp L1 % Error! No such label

L2 : {r2 : int, r31 : {r1 : int} → {}} → {}
mov r31,r2
jmp r31 % Error! r31 not a label

13



Typechecking Overview

• Intuitively, the type system needs to keep track of:
▶ The types of the registers at each point in the code
▶ The types of the labels on the code

• Heap types: Ψmaps labels to code types

• Register types: Γmaps registers to types

• A family of typing (and subtyping) relations:
▶ Ψ; Γ ⊢ v : τ
▶ Ψ ⊢ i : Γ → Γ′

▶ τ ≤ τ ′

▶ ⊢ H : Ψ
▶ ⊢ R : Γ
▶ ⊢ (H, R, B)

14



Typechecking Values

Ψ; Γ ⊢ v : τ

Ψ; Γ ⊢ n : int

Γ(r) = τ

Ψ; Γ ⊢ r : τ

Ψ(L) = τ

Ψ; Γ ⊢ L : τ
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Subtyping

• A program won’t crash if the register file has more values that
are needed to satisfy the typing conditions

• Formally, a register file with more components is a subtype of a
register file with fewer components:

{r1 : τ1, . . . , ri : τi; ri+1 : τ i+ 1} ≤ {r1 : τ1, . . . , ri : τi}
Note that this is the ordinary rule for records!

• Code subtyping goes in the opposite direction: a label requiring
r1 and r2 may be used as a label requiring r1, r2, and r3.

Γ′ ≤ Γ

Γ → {} ≤ Γ′ → {}
Note that this is the ordinary contravariant rule for functions!

16



Subtyping

• Subtyping is also reflexive and transitive.

τ ≤ τ

τ1 ≤ τ2 τ2 ≤ τ3

τ1 ≤ τ3

• A subsumption rule allows values to be used at supertypes:

Ψ; Γ ⊢ v : τ1 τ1 ≤ τ2

Ψ; Γ ⊢ v : τ2

17



Typing Instructions

Ψ ⊢ i : Γ1 → Γ2

• Γ1 describes the registers before the execution of the
instruction—a precondition

• Γ2 describes the registers after the execution of the
instruction—a postcondition

• Ψ is invariant. That is, the types of objects on the heap will not
change (at least for now...)
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Typing Instructions

Ψ ⊢ i : Γ1 → Γ2

Arithmetic operations

Ψ; Γ ⊢ rs : int Ψ; Γ ⊢ v : int

Ψ ⊢ aop rd, rs, v : Γ → Γ[rd := int]

Conditional branches

Ψ; Γ ⊢ r : int Ψ; Γ ⊢ v : Γ → {}
Ψ ⊢ bop r, v : Γ → Γ

Data movement

Ψ; Γ ⊢ v : τ

Ψ ⊢ mov rd, v : Γ → Γ[rd := τ ]

19



Typing Instructions

Ψ ⊢ i : Γ1 → Γ2

Jumps

Ψ; Γ ⊢ v : Γ → {}
Ψ ⊢ jmp v : Γ → {}

Basic blocks

Ψ; Γ ⊢ i : Γ1 → Γ2 Ψ; Γ ⊢ B : Γ2 → {}
Ψ ⊢ i; B : Γ1 → {}

20



Heap, Register File, and Machine Typing

Heaps

dom(H) = dom(Ψ) ∀L ∈ dom(H).Ψ ⊢ H(L) : Ψ(L)

⊢ H : Ψ

Register Files

∀r ∈ dom(Γ).Ψ; {} ⊢ R(r) : Γ(r)

Ψ ⊢ R : Γ

Machines

⊢ H : Ψ Ψ ⊢ R : Γ Ψ ⊢ B : Γ → {}
⊢ (H, R, B)

21



Type Safety

The type system satisfies the following theorem:

Theorem (Type Safety)

If ⊢ Σ and Σ 7→⋆ Σ′ , then Σ′ is not stuck.

Proof:
• Progress: if a state is well-typed, then it is not stuck
• Preservation: evaluation preserves types

Corollary

• Every jump in a well-typed program is to a valid label
• Every arithmetic operation in a well-typed program is done with
integers—not labels!

22
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Canonical Forms

Lemma
If ⊢ H : Ψ and Ψ ⊢ R : Γ and Ψ; Γ ⊢ v : τ then

• τ = int implies R(v) = n

• τ = {r1 : τ1, . . . , rk : τk} → {} implies R(v) = L.

Moreover H(L) = B and Ψ ⊢ B : {r1 : τ1, . . . , rk : τk} → {}

Proof: by induction on typing derivations...

23



Progress (jmp Case)

Lemma
If ⊢ Σ1 then there exists a Σ2 such that Σ1 7→ Σ2

⊢ H : Ψ Ψ ⊢ R : Γ Ψ ⊢ jmp v : Γ → {}
⊢ (H, R, jmp v)

The third premise must be a derivation that ends in the rule:

Ψ; Γ ⊢ v : Γ

Ψ ⊢ jmp v : Γ → {}
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