
 

CS 4110

Programming Languages & Logics

Lecture 29
Propositions as Types

10 November 2014



Propositions as Types

There is a deep connection between type systems and formal logic

This connection was known to early 20th century mathematicians
but was later developed substantially by Curry and Howard

Although it is usually formulated in terms of type systems like
System F and proof systems like natural deduction, the connection
is actually very robust and has been extended to many other
systems including classical logic

2



Propositions as Types

The main intuitions for propositions-as-types comes from thinking
of proofs constructively

For example, the proof rule for introducting a conjunction ϕ ∧ ψ,

Γ ⊢ ϕ Γ ⊢ ψ
Γ ⊢ ϕ ∧ ψ

∧-intro

can be thought of as a function that takes a proof of ϕ and a proof
of ψ and builds a proof of ϕ ∧ ψ

This is a significant departure from classical logic, which has rules
such as excluded middle or double-negation elimination,

Γ ⊢ ψ ∧ ¬ψ
excluded middle

that do not have an obvious constructive interpretation

3



Propositions as Types

The main intuitions for propositions-as-types comes from thinking
of proofs constructively

For example, the proof rule for introducting a conjunction ϕ ∧ ψ,

Γ ⊢ ϕ Γ ⊢ ψ
Γ ⊢ ϕ ∧ ψ

∧-intro

can be thought of as a function that takes a proof of ϕ and a proof
of ψ and builds a proof of ϕ ∧ ψ

This is a significant departure from classical logic, which has rules
such as excluded middle or double-negation elimination,

Γ ⊢ ψ ∧ ¬ψ
excluded middle

that do not have an obvious constructive interpretation
3



Propositions as Types

Propositions-as-types recongizes that each constructive proof can
be turned into a program that witnesses the proof, as summarized
by the following table:

Type Systems Formal Logic
τ Type ϕ Formula
τ Inhabited type ϕ Theorem
e Well-typed expression π Proof

Hence, for every proof in first-order logic, we can obtain a
well-typed expression in λ-calculus, and vice versa

4



Formulas

Let P range over first-order propositional variables

ϕ ::= ⊤
| ⊥
| P
| ϕ ∧ ψ
| ϕ ∨ ψ
| ϕ→ ψ
| ¬ϕ
| ∀x. ϕ

We will let negation ¬P be an abbreviation for P → ⊥

5



Formulas

Let P range over first-order propositional variables

ϕ ::= ⊤
| ⊥
| P
| ϕ ∧ ψ
| ϕ ∨ ψ
| ϕ→ ψ
| ¬ϕ
| ∀x. ϕ

We will let negation ¬P be an abbreviation for P → ⊥

5



Natural Deduction

Γ, ϕ ⊢ phi
Axiom

Γ, ϕ ⊢ ψ
Γ ⊢ ϕ→ ψ

→-intro Γ ⊢ ϕ→ ψ Γ ⊢ ϕ
Γ ⊢ ψ

→-elim

Γ ⊢ ϕ Γ ⊢ ψ
Γ ⊢ ϕ ∧ ψ

∧-intro Γ ⊢ ϕ ∧ ψ
Γ ⊢ ϕ

∧-elim1 Γ ⊢ ϕ ∧ ψ
Γ ⊢ ϕ

∧-elim2

Γ ⊢ ϕ
Γ ⊢ ϕ ∨ ψ

∨-intro1 Γ ⊢ ψ
Γ ⊢ ϕ ∨ ψ

∨-intro2

Γ ⊢ ϕ ∨ ψ Γ ⊢ ϕ→ χ Γ ⊢ ψ → χ

Γ ⊢ χ
∨-elim

Γ, P ⊢ ϕ
Γ ⊢ ∀P. ϕ

∀-intro Γ ⊢ ∀P. ϕ
Γ ⊢ ϕ{ψ/P}

∀-elim

6



System F Type System

Γ, x : τ ⊢ x : τ
Axiom

Γ, x : σ ⊢ e : τ

Γ ⊢ λx :σ. e :τ
→-intro Γ ⊢ e1 : σ → τ Γ ⊢ e2 : σ

Γ ⊢ e1 e2 : τ
→-elim

Γ ⊢ e1 :σ Γ ⊢ e2 :τ

Γ ⊢ (e1, e2) :σ × τ
∧-intro Γ ⊢ e :σ × τ

Γ ⊢ #1 e : σ
∧-elim1 Γ ⊢ e :σ × τ

Γ ⊢ #2 e : τ
∧-elim2

Γ ⊢ e : σ

Γ ⊢ inlσ+τ e :σ + τ
∨-intro1 Γ ⊢ e : τ

Γ ⊢ inrσ+τ e :σ + τ
∨-intro2

Γ ⊢ eσ + τ Γ ⊢ e1 :σ → ρ Γ ⊢ e2 :τ → ρ

Γ ⊢ case e of e1 e2 :ρ
∨-elim

∆, α; Γ ⊢ e : τ

∆; Γ ⊢ Λα. e : ∀α.τ
∀-intro Γ ⊢ e :∀α. τ

Γ ⊢ e [σ] :τ{σ/α}
∀-elim

7



Propositions as Types

We can summarize the relationship between formulas and types
using the following table:

Type Systems Formal Logic
→ Function → Implication
× Product ∧ Conjunction
+ Sum ∨ Disjunction
∀ Universal ∀ Quantifier

8



Term Assignment

Given a natural deduction proof, there is a corresponding
well-typed System F expression

The transformation from a proof to an expression is often called
term assignment

Term assignment provides a convenient way to prove a theorem:
find a λ-calculus term with the corresponding type!

9



Example

Γ, ϕ→ ψ, ϕ ⊢ ϕ→ ψ
Axiom

Γ, ϕ→ ψ, ϕ ⊢ ϕ
Axiom

Γ, ϕ→ ψ, ϕ ⊢ ψ
→-elim

Γ, ϕ→ ψ,⊢ ϕ→ ψ
→-intro

Γ ⊢ (ϕ→ ψ) → ϕ→ ψ
→-intro

10



Example

Γ, x : σ → τ, y : σ ⊢ x : σ → τ
Axiom

Γ, x : σ → τ, y : σ ⊢ σ
Axiom

Γ, x : σ → τ, y : σ ⊢ x y :τ
→-elim

Γ, x : σ → τ ⊢ λy :σ. x y :σ → τ
→-intro

Γ ⊢ λx :σ → τ. λy :σ. x y : (σ → τ) → σ → τ
→-intro

11



Example

Hence, the term
λx :σ → τ. λy :σ. x y

witnesses the proof of

(ϕ→ ψ) → ϕ→ ψ

12



Classical Logic

The problem of extending propositions-as-types to classical logic
was an open question for many years

It was not at all obvious how to do this, as the usual constructive
interpretation of proofs does not readily extend to rules such as
excluded middle

In the late 1980s, Griffin showed that continuation-passing style
corresponds to a way of embedding classical logic into
constructive logic

13



Negation and Continuations

Given an expression e of type τ , we can think of the
continuation-passing style transformation as converting the
expression into one of type (τ → ⊥) → ⊥

Intuitively, the τ → ⊥ is the type of the continuation, which “never
returns”

Since ¬ϕ is just an abbreviation for ϕ→ ⊥, this corresponds to the
following classical rule:

Γ ⊢ ϕ
Γ ⊢ ¬¬ϕ

This yields a way to prove any formula that is classically valid in
constructive logic using the double-negation embedding

14


